--- license: apache-2.0 base_model: ethanyt/guwenbert-large tags: - generated_from_trainer datasets: - ched_ner metrics: - precision - recall - f1 - accuracy model-index: - name: guwenbert-large-CHED-ner results: - task: name: Token Classification type: token-classification dataset: name: ched_ner type: ched_ner config: ched_ner split: validation args: ched_ner metrics: - name: Precision type: precision value: 0.7442799461641992 - name: Recall type: recall value: 0.8069066147859922 - name: F1 type: f1 value: 0.7743290548424737 - name: Accuracy type: accuracy value: 0.9666064635130461 --- # guwenbert-large-CHED-ner This model is a fine-tuned version of [ethanyt/guwenbert-large](https://huggingface.co/ethanyt/guwenbert-large) on the ched_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.1905 - Precision: 0.7443 - Recall: 0.8069 - F1: 0.7743 - Accuracy: 0.9666 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 356 | 0.1420 | 0.6862 | 0.7573 | 0.72 | 0.9609 | | 0.2304 | 2.0 | 712 | 0.1324 | 0.6907 | 0.7972 | 0.7401 | 0.9624 | | 0.095 | 3.0 | 1068 | 0.1314 | 0.7268 | 0.7918 | 0.7579 | 0.9656 | | 0.095 | 4.0 | 1424 | 0.1348 | 0.7248 | 0.7967 | 0.7590 | 0.9659 | | 0.0613 | 5.0 | 1780 | 0.1525 | 0.7088 | 0.8147 | 0.7581 | 0.9635 | | 0.0397 | 6.0 | 2136 | 0.1635 | 0.7224 | 0.8127 | 0.7649 | 0.9648 | | 0.0397 | 7.0 | 2492 | 0.1693 | 0.7416 | 0.7986 | 0.7691 | 0.9662 | | 0.0261 | 8.0 | 2848 | 0.1809 | 0.7338 | 0.8059 | 0.7682 | 0.9657 | | 0.0164 | 9.0 | 3204 | 0.1904 | 0.7291 | 0.8127 | 0.7686 | 0.9655 | | 0.0124 | 10.0 | 3560 | 0.1905 | 0.7443 | 0.8069 | 0.7743 | 0.9666 | ### Framework versions - Transformers 4.43.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1