{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a8c25bbc100>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1716860680526472348, "learning_rate": 0.001, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3dAz3s1ru7Gml7PMn2iDo3FCu9nFvCOwAAgD8AAIA/ZszQvOyJ5LmB6w21s4xlsM2OPTt6tHM0AACAPwAAgD/NiPE7/KW6P/IA+T29MJE+luwXunYAbDsAAAAAAAAAALMfYj66FFo/YEwYPg5p/b4RVZg+k3qBPQAAAAAAAAAAupUBviu2ET8Sg8Q9lpv5vrubKb4+4wg+AAAAAAAAAAAmzO29rex3P3pEj74m5Cu/Fi9QvuDc/b0AAAAAAAAAAICZWz5S1bI/y9IfP/w8374SN4g+kcaiPgAAAAAAAAAAGrYWvhR+jT3Lroo+FYRzvjA+ALtgsHs9AAAAAAAAAAA6h1O+VwMFvRXBWL0abg68dExwPgYO1jwAAIA/AACAP77aq77/HmE/4NoCvtf4Dr/Bc8W+MHe7PQAAAAAAAAAAAP+cvBQK7Du04rw8FsgPvpkZ27t+2QU9AAAAAAAAAABNUCa9rNvyPo6mdj2arcC+aG0KPH9iu70AAAAAAAAAAABQcT0KCwm70NPmvSyt8TxjCBI8wpzNvQAAgD8AAIA/7Xo8vqi9nLxmuDE7TriFOcCtBj42iWW6AACAPwAAAACNFIs9pPBouTY287uejza2kPYTvKXupzUAAIA/AAAAAM0dDT32HFy6D0+POsDikTXQsty566GouQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWV6gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFt6+WWyC6MAWyUS8GMAXSUR0Cb9cyq+8GtdX2UKGgGR0BytJeIEbHZaAdL/WgIR0Cb9f1X/5tWdX2UKGgGR0Bvm65TZQHiaAdL4GgIR0Cb9iGJemeldX2UKGgGR0BxNS9h7VriaAdL8mgIR0Cb9lEsrd30dX2UKGgGR0BwOp4QjD8+aAdL12gIR0Cb9l1/lQuVdX2UKGgGR0BxPHMeOn2qaAdL9mgIR0Cb9n3N9ph4dX2UKGgGR0By1wWEbo8qaAdL4WgIR0Cb9vN1QqI8dX2UKGgGR0BzL2GDcuanaAdL5GgIR0Cb9zrq+rU9dX2UKGgGR0BwucdZJTVEaAdL7mgIR0Cb99sguAZsdX2UKGgGR0Byk2u2Zy+6aAdL4GgIR0Cb9/lYEGJOdX2UKGgGR0BxWDwUg0TDaAdL42gIR0Cb+Fm0mdAgdX2UKGgGR0BxpCkpI+W4aAdLw2gIR0Cb+NOs1baAdX2UKGgGR0BxJcbiqABlaAdLzGgIR0Cb+SPNmlImdX2UKGgGR0ByPNW/8EV4aAdL4mgIR0Cb+ZRr8BMjdX2UKGgGR0Bxaq+nIhhZaAdL+mgIR0Cb+uUkfLcLdX2UKGgGR0BQ110gbIcSaAdLr2gIR0Cb+0rVvuPWdX2UKGgGR0Bw1oR+SbH7aAdLw2gIR0Cb++ANXo1UdX2UKGgGR0ByvnbO/tY0aAdLwGgIR0Cb/AWHDaXbdX2UKGgGR0BwTI8DB/I9aAdL12gIR0Cb/EFOwgTzdX2UKGgGR0ByzA+X7cfvaAdL7WgIR0Cb/ILmp2lmdX2UKGgGR0Bx5viZOSGKaAdNBgFoCEdAm/2jYI0IknV9lChoBkdAcYquYQarFWgHS99oCEdAm/3YQOFxn3V9lChoBkdAcDF90Rvm5mgHS9BoCEdAm/6W/nGKh3V9lChoBkdAcTH33YcvNGgHS+1oCEdAm/7SxmkFfXV9lChoBkdAcwrutOmBOGgHS99oCEdAm/77yQPqcHV9lChoBkdAcMzs052hZmgHS9RoCEdAm/8lcQiA2HV9lChoBkdAbhuSaEzwdGgHS8NoCEdAm/9ycXm/33V9lChoBkdAceq5T6zmfWgHS9hoCEdAm//H0PH1e3V9lChoBkdAccLvZAY51mgHS/NoCEdAnAFmattALXV9lChoBkdAcWsfzBhx52gHS81oCEdAnAGQyAQQMHV9lChoBkdAcmKkqc3ERGgHS8FoCEdAnAJSN0eU6nV9lChoBkdAcZ2zguRLb2gHS+NoCEdAnBl690zTF3V9lChoBkdAbbHVwxWT5mgHS9loCEdAnBmsdo3713V9lChoBkdAb/xXFtKqXGgHS8toCEdAnBnXBP9DQnV9lChoBkdAcTCkLhJiAmgHS81oCEdAnBquu3c583V9lChoBkdAcjaXw9aEBmgHTQMBaAhHQJwa+rT6SDB1fZQoaAZHQHBigJTl1bJoB0vJaAhHQJwbXPw/gR91fZQoaAZHQHIewp4KQaJoB0vDaAhHQJwbdNYbKih1fZQoaAZHQHMrUVeruIBoB0vIaAhHQJwbxYKYzBR1fZQoaAZHQHK3UEHMUypoB0vcaAhHQJwb5qVQhwF1fZQoaAZHQHPe4R7JGONoB0v9aAhHQJwb6V5a/yp1fZQoaAZHQHN3pjUd7v5oB0voaAhHQJwb5PoFFDx1fZQoaAZHQHAxYAS39aVoB0voaAhHQJwcpNbkfcN1fZQoaAZHQHNcko0ALiNoB0vVaAhHQJwdaLFXJYF1fZQoaAZHQHLacOf/WDpoB0viaAhHQJwd2wMYuTR1fZQoaAZHQG/eKLS/j81oB0vWaAhHQJwe1HiFTNt1fZQoaAZHQHEQQLRa5gBoB0vfaAhHQJwe5iPQv6F1fZQoaAZHQHJz6s2eg+RoB0u+aAhHQJwfHKJVKf51fZQoaAZHQHNckfgaWHFoB0v9aAhHQJwfLWz4UN91fZQoaAZHQG/ylPacqe9oB0u+aAhHQJwfZsdkrgB1fZQoaAZHQHJ0BhYvFm5oB00OAWgIR0CcH9LYf4h2dX2UKGgGR0By4D7hvR7aaAdNBgNoCEdAnB/+9OARTXV9lChoBkdAcBsCgsbvPWgHS8poCEdAnCAp6t1ZDHV9lChoBkdAc1800FbFCWgHS9FoCEdAnCA7Q5WBBnV9lChoBkdAb0QQGOdXk2gHS8RoCEdAnCBz5ftx/HV9lChoBkdAbjHbD/EOy2gHS8doCEdAnCCJCjUNKHV9lChoBkdAcPMT3IuGsWgHS9BoCEdAnCCVS4vvjXV9lChoBkdAbrp+az/p+2gHS9loCEdAnCDjBAOav3V9lChoBkdAcy9O9nK4hGgHS8ZoCEdAnCEz5GjKxXV9lChoBkdAclZrc0tRN2gHS99oCEdAnCJ5OWSlnHV9lChoBkdAcIY2+wkgOmgHS89oCEdAnCNuDJ2dNHV9lChoBkdAc2QVI7Njb2gHS81oCEdAnCO2DHwPRXV9lChoBkdAcqk+6y0KJGgHTQYBaAhHQJwj2s4ku6F1fZQoaAZHQHCrBr8BMi9oB0vKaAhHQJwkU30f5k91fZQoaAZHQHIvrD/EOy5oB0viaAhHQJwkea4MF2V1fZQoaAZHQHEVYvalDWtoB0vwaAhHQJwkgwRGtp51fZQoaAZHQHGsfbj94u9oB00LAWgIR0CcJP4dIXj3dX2UKGgGR0BymPcer+5waAdL1WgIR0CcJQ/7zkIYdX2UKGgGR0BzEbXg9/z8aAdL52gIR0CcJWcC5mROdX2UKGgGR0BzFoRRMvh7aAdL9WgIR0CcJYyHVPN3dX2UKGgGR0Bx2J1gYxcnaAdL4GgIR0CcJY4nndO7dX2UKGgGR0BwW1GDtgKGaAdL52gIR0CcJdbH6uW9dX2UKGgGR0ByryEK3NLUaAdNBgFoCEdAnCZ67iADrHV9lChoBkdAcfkJ4SpR42gHTQcBaAhHQJwm5IuoP091fZQoaAZHQHEh/XK8tf5oB0vIaAhHQJwnJ7w8W9F1fZQoaAZHQHFR5Grjo6loB0vEaAhHQJwoYXEZR9B1fZQoaAZHQHFsizLOiWVoB0vXaAhHQJwobcM3IdV1fZQoaAZHQG/NvkBCD29oB0vdaAhHQJwo2UeMhox1fZQoaAZHQHAPKQNkOI9oB0vCaAhHQJwpAD2alUJ1fZQoaAZHQHLRhBE8aGZoB0vgaAhHQJwpkIToMa11fZQoaAZHQHHzLFXJYDFoB0vZaAhHQJwqCSt/4It1fZQoaAZHQHFdwBkqc3FoB0vNaAhHQJwqLxjJ+2F1fZQoaAZHQHJwMfvF3pxoB0v9aAhHQJwqcdYGMXJ1fZQoaAZHQG9LeeOGTLZoB0vQaAhHQJwqcS13MZB1fZQoaAZHQHHICLZSNwRoB0vFaAhHQJwqgQz1sch1fZQoaAZHQHGu+g+QlrxoB0v/aAhHQJwrAqd6LO11fZQoaAZHQHFQufh/Aj9oB0vNaAhHQJwrT8WKuSx1fZQoaAZHQHKQvMB6rvNoB00CAWgIR0CcK47+T/yYdX2UKGgGR0BxP2SfUWl/aAdLy2gIR0CcK648U21ldX2UKGgGR0BxFEOEug6EaAdLtWgIR0CcLXez2OABdX2UKGgGR0BxpZjNIK+jaAdLy2gIR0CcLZ14Pf8/dX2UKGgGR0AvhV7Qb+98aAdLhWgIR0CcLg52yLQ5dX2UKGgGR0Bxqr7TDwYtaAdL3mgIR0CcL0H7P6bfdX2UKGgGR0Bwwf4j8k2QaAdL12gIR0CcMKdKujh2dX2UKGgGR0Byr8AvL5h0aAdNIAFoCEdAnDD/KlpGnXV9lChoBkdAcy0wnYxtYWgHS/doCEdAnDEuHrQgLnV9lChoBkdAcI4SZSeiBWgHS/doCEdAnDIqP8yeqnV9lChoBkdAbZ/X/5tWMmgHS8xoCEdAnDLYHs1KoXV9lChoBkdAcnXOLiuMdmgHS9loCEdAnDLsPjGT93V9lChoBkdAcqDEmplz2mgHS/9oCEdAnDPfe+Eh7nVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 10, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}