--- license: agpl-3.0 metrics: - wer base_model: - openai/whisper-large-v3-turbo pipeline_tag: automatic-speech-recognition tags: - upper_sorbian --- ## Model Description This model was fine-tuned on over 24 hours of transcribed upper sorbian speech to aid future research, conservation and revitalisation of the language. ## Training Data - **Source:** Stiftung für das sorbische Volk / Załožba za serbski lud (https://stiftung.sorben.com/) - **Volume:** 1493 Minutes, 10% Validation Set, 10% Test Set ## Training Details - **Hyperparameters**: - Batch size: 64 - Learning rate: 3e-6, linear decay - **Optimizer**: AdamW - **Warmup**: 1000 steps - **Additional Techniques**: BF16 training, initial 15 layers frozen ## Performance ### Metrics - **Word Error Rate:** 6.2 ## Usage ### Example Code To use the model, follow this example code: ```python import torch import torchaudio from transformers import WhisperProcessor, WhisperForConditionalGeneration # Load the model and processor model_name = "DILHTWD/whisper-large-v3-turbo-hsb" processor_name = "openai/whisper-large-v3-turbo" processor = WhisperProcessor.from_pretrained(processor_name) model = WhisperForConditionalGeneration.from_pretrained(model_name) # Load and preprocess the audio audio, sample_rate = torchaudio.load("test.mp3") if sample_rate != 16000: audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(audio) input_features = processor(audio.squeeze().numpy(), sampling_rate=16000, return_tensors="pt").input_features # Generate transcription with torch.no_grad(): predicted_ids = model.generate(input_features) transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] # Print the transcription print("Transcription:", transcription) ``` ## Model Details - **Model Name:** DILHTWD/whisper-large-v3-turbo-hsb - **Publisher:** Data Intelligence Lab, Hochschule für Technik und Wirtschaft Dresden - **Model Version:** 1.0.0 - **Model Date:** 2024-11-15 - **License:** [AGPL-3.0](https://www.gnu.org/licenses/agpl-3.0.de.html) - **Architecture:** Whisper Large v3 Turbo - **Task:** Automatic Speech Recognition