#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ This code is adapted from AllenAI's Longformer: https://github.com/allenai/longformer/ """ from typing import List import math import torch from torch import nn import torch.nn.functional as F from .diagonaled_mm_tvm import diagonaled_mm as diagonaled_mm_tvm, mask_invalid_locations from .sliding_chunks import sliding_chunks_matmul_qk, sliding_chunks_matmul_pv from .sliding_chunks import sliding_chunks_no_overlap_matmul_qk, sliding_chunks_no_overlap_matmul_pv from transformers.models.roberta.modeling_roberta import RobertaConfig, RobertaModel, RobertaForMaskedLM class Longformer(RobertaModel): def __init__(self, config): super(Longformer, self).__init__(config) if config.attention_mode == 'n2': pass # do nothing, use BertSelfAttention instead else: for i, layer in enumerate(self.encoder.layer): layer.attention.self = LongformerSelfAttention(config, layer_id=i) class LongformerForMaskedLM(RobertaForMaskedLM): def __init__(self, config): super(LongformerForMaskedLM, self).__init__(config) if config.attention_mode == 'n2': pass # do nothing, use BertSelfAttention instead else: for i, layer in enumerate(self.roberta.encoder.layer): layer.attention.self = LongformerSelfAttention(config, layer_id=i) class LongformerConfig(RobertaConfig): def __init__(self, attention_window: List[int] = None, attention_dilation: List[int] = None, autoregressive: bool = False, attention_mode: str = 'sliding_chunks', **kwargs): """ Args: attention_window: list of attention window sizes of length = number of layers. window size = number of attention locations on each side. For an affective window size of 512, use `attention_window=[256]*num_layers` which is 256 on each side. attention_dilation: list of attention dilation of length = number of layers. attention dilation of `1` means no dilation. autoregressive: do autoregressive attention or have attention of both sides attention_mode: 'n2' for regular n^2 self-attention, 'tvm' for TVM implemenation of Longformer selfattention, 'sliding_chunks' for another implementation of Longformer selfattention """ super().__init__(**kwargs) self.attention_window = attention_window self.attention_dilation = attention_dilation self.autoregressive = autoregressive self.attention_mode = attention_mode assert self.attention_mode in ['tvm', 'sliding_chunks', 'n2', 'sliding_chunks_no_overlap'] class LongformerSelfAttention(nn.Module): def __init__(self, config, layer_id): super(LongformerSelfAttention, self).__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( "The hidden size (%d) is not a multiple of the number of attention " "heads (%d)" % (config.hidden_size, config.num_attention_heads)) self.num_heads = config.num_attention_heads self.head_dim = int(config.hidden_size / config.num_attention_heads) self.embed_dim = config.hidden_size self.query = nn.Linear(config.hidden_size, self.embed_dim) self.key = nn.Linear(config.hidden_size, self.embed_dim) self.value = nn.Linear(config.hidden_size, self.embed_dim) self.query_global = nn.Linear(config.hidden_size, self.embed_dim) self.key_global = nn.Linear(config.hidden_size, self.embed_dim) self.value_global = nn.Linear(config.hidden_size, self.embed_dim) self.dropout = config.attention_probs_dropout_prob self.layer_id = layer_id self.attention_window = config.attention_window[self.layer_id] self.attention_dilation = config.attention_dilation[self.layer_id] self.attention_mode = config.attention_mode self.autoregressive = config.autoregressive assert self.attention_window > 0 assert self.attention_dilation > 0 assert self.attention_mode in ['tvm', 'sliding_chunks', 'sliding_chunks_no_overlap'] if self.attention_mode in ['sliding_chunks', 'sliding_chunks_no_overlap']: assert not self.autoregressive # not supported assert self.attention_dilation == 1 # dilation is not supported def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, output_attentions=False, ): ''' The `attention_mask` is changed in `BertModel.forward` from 0, 1, 2 to -ve: no attention 0: local attention +ve: global attention ''' assert encoder_hidden_states is None, "`encoder_hidden_states` is not supported and should be None" assert encoder_attention_mask is None, "`encoder_attention_mask` is not supported and should be None" if attention_mask is not None: key_padding_mask = attention_mask < 0 extra_attention_mask = attention_mask > 0 remove_from_windowed_attention_mask = attention_mask != 0 num_extra_indices_per_batch = extra_attention_mask.long().sum(dim=1) max_num_extra_indices_per_batch = num_extra_indices_per_batch.max() if max_num_extra_indices_per_batch <= 0: extra_attention_mask = None else: # To support the case of variable number of global attention in the rows of a batch, # we use the following three selection masks to select global attention embeddings # in a 3d tensor and pad it to `max_num_extra_indices_per_batch` # 1) selecting embeddings that correspond to global attention extra_attention_mask_nonzeros = extra_attention_mask.nonzero(as_tuple=True) zero_to_max_range = torch.arange(0, max_num_extra_indices_per_batch, device=num_extra_indices_per_batch.device) # mask indicating which values are actually going to be padding selection_padding_mask = zero_to_max_range < num_extra_indices_per_batch.unsqueeze(dim=-1) # 2) location of the non-padding values in the selected global attention selection_padding_mask_nonzeros = selection_padding_mask.nonzero(as_tuple=True) # 3) location of the padding values in the selected global attention selection_padding_mask_zeros = (selection_padding_mask == 0).nonzero(as_tuple=True) else: remove_from_windowed_attention_mask = None extra_attention_mask = None key_padding_mask = None hidden_states = hidden_states.transpose(0, 1) seq_len, bsz, embed_dim = hidden_states.size() assert embed_dim == self.embed_dim q = self.query(hidden_states) k = self.key(hidden_states) v = self.value(hidden_states) q /= math.sqrt(self.head_dim) q = q.view(seq_len, bsz, self.num_heads, self.head_dim).transpose(0, 1) k = k.view(seq_len, bsz, self.num_heads, self.head_dim).transpose(0, 1) # attn_weights = (bsz, seq_len, num_heads, window*2+1) if self.attention_mode == 'tvm': q = q.float().contiguous() k = k.float().contiguous() attn_weights = diagonaled_mm_tvm(q, k, self.attention_window, self.attention_dilation, False, 0, False) elif self.attention_mode == "sliding_chunks": attn_weights = sliding_chunks_matmul_qk(q, k, self.attention_window, padding_value=0) elif self.attention_mode == "sliding_chunks_no_overlap": attn_weights = sliding_chunks_no_overlap_matmul_qk(q, k, self.attention_window, padding_value=0) else: raise False mask_invalid_locations(attn_weights, self.attention_window, self.attention_dilation, False) if remove_from_windowed_attention_mask is not None: # This implementation is fast and takes very little memory because num_heads x hidden_size = 1 # from (bsz x seq_len) to (bsz x seq_len x num_heads x hidden_size) remove_from_windowed_attention_mask = remove_from_windowed_attention_mask.unsqueeze(dim=-1).unsqueeze(dim=-1) # cast to float/half then replace 1's with -inf float_mask = remove_from_windowed_attention_mask.type_as(q).masked_fill(remove_from_windowed_attention_mask, -10000.0) repeat_size = 1 if isinstance(self.attention_dilation, int) else len(self.attention_dilation) float_mask = float_mask.repeat(1, 1, repeat_size, 1) ones = float_mask.new_ones(size=float_mask.size()) # tensor of ones # diagonal mask with zeros everywhere and -inf inplace of padding if self.attention_mode == 'tvm': d_mask = diagonaled_mm_tvm(ones, float_mask, self.attention_window, self.attention_dilation, False, 0, False) elif self.attention_mode == "sliding_chunks": d_mask = sliding_chunks_matmul_qk(ones, float_mask, self.attention_window, padding_value=0) elif self.attention_mode == "sliding_chunks_no_overlap": d_mask = sliding_chunks_no_overlap_matmul_qk(ones, float_mask, self.attention_window, padding_value=0) attn_weights += d_mask assert list(attn_weights.size())[:3] == [bsz, seq_len, self.num_heads] assert attn_weights.size(dim=3) in [self.attention_window * 2 + 1, self.attention_window * 3] # the extra attention if extra_attention_mask is not None: selected_k = k.new_zeros(bsz, max_num_extra_indices_per_batch, self.num_heads, self.head_dim) selected_k[selection_padding_mask_nonzeros] = k[extra_attention_mask_nonzeros] # (bsz, seq_len, num_heads, max_num_extra_indices_per_batch) selected_attn_weights = torch.einsum('blhd,bshd->blhs', (q, selected_k)) selected_attn_weights[selection_padding_mask_zeros[0], :, :, selection_padding_mask_zeros[1]] = -10000 # concat to attn_weights # (bsz, seq_len, num_heads, extra attention count + 2*window+1) attn_weights = torch.cat((selected_attn_weights, attn_weights), dim=-1) attn_weights_float = F.softmax(attn_weights, dim=-1, dtype=torch.float32) # use fp32 for numerical stability if key_padding_mask is not None: # softmax sometimes inserts NaN if all positions are masked, replace them with 0 attn_weights_float = torch.masked_fill(attn_weights_float, key_padding_mask.unsqueeze(-1).unsqueeze(-1), 0.0) attn_weights = attn_weights_float.type_as(attn_weights) attn_probs = F.dropout(attn_weights_float.type_as(attn_weights), p=self.dropout, training=self.training) v = v.view(seq_len, bsz, self.num_heads, self.head_dim).transpose(0, 1) attn = 0 if extra_attention_mask is not None: selected_attn_probs = attn_probs.narrow(-1, 0, max_num_extra_indices_per_batch) selected_v = v.new_zeros(bsz, max_num_extra_indices_per_batch, self.num_heads, self.head_dim) selected_v[selection_padding_mask_nonzeros] = v[extra_attention_mask_nonzeros] # use `matmul` because `einsum` crashes sometimes with fp16 # attn = torch.einsum('blhs,bshd->blhd', (selected_attn_probs, selected_v)) attn = torch.matmul(selected_attn_probs.transpose(1, 2), selected_v.transpose(1, 2).type_as(selected_attn_probs)).transpose(1, 2) attn_probs = attn_probs.narrow(-1, max_num_extra_indices_per_batch, attn_probs.size(-1) - max_num_extra_indices_per_batch).contiguous() if self.attention_mode == 'tvm': v = v.float().contiguous() attn += diagonaled_mm_tvm(attn_probs, v, self.attention_window, self.attention_dilation, True, 0, False) elif self.attention_mode == "sliding_chunks": attn += sliding_chunks_matmul_pv(attn_probs, v, self.attention_window) elif self.attention_mode == "sliding_chunks_no_overlap": attn += sliding_chunks_no_overlap_matmul_pv(attn_probs, v, self.attention_window) else: raise False attn = attn.type_as(hidden_states) assert list(attn.size()) == [bsz, seq_len, self.num_heads, self.head_dim] attn = attn.transpose(0, 1).reshape(seq_len, bsz, embed_dim).contiguous() # For this case, we'll just recompute the attention for these indices # and overwrite the attn tensor. TODO: remove the redundant computation if extra_attention_mask is not None: selected_hidden_states = hidden_states.new_zeros(max_num_extra_indices_per_batch, bsz, embed_dim) selected_hidden_states[selection_padding_mask_nonzeros[::-1]] = hidden_states[extra_attention_mask_nonzeros[::-1]] q = self.query_global(selected_hidden_states) k = self.key_global(hidden_states) v = self.value_global(hidden_states) q /= math.sqrt(self.head_dim) q = q.contiguous().view(max_num_extra_indices_per_batch, bsz * self.num_heads, self.head_dim).transpose(0, 1) # (bsz*self.num_heads, max_num_extra_indices_per_batch, head_dim) k = k.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1) # bsz * self.num_heads, seq_len, head_dim) v = v.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1) # bsz * self.num_heads, seq_len, head_dim) attn_weights = torch.bmm(q, k.transpose(1, 2)) assert list(attn_weights.size()) == [bsz * self.num_heads, max_num_extra_indices_per_batch, seq_len] attn_weights = attn_weights.view(bsz, self.num_heads, max_num_extra_indices_per_batch, seq_len) attn_weights[selection_padding_mask_zeros[0], :, selection_padding_mask_zeros[1], :] = -10000.0 if key_padding_mask is not None: attn_weights = attn_weights.masked_fill( key_padding_mask.unsqueeze(1).unsqueeze(2), -10000.0, ) attn_weights = attn_weights.view(bsz * self.num_heads, max_num_extra_indices_per_batch, seq_len) attn_weights_float = F.softmax(attn_weights, dim=-1, dtype=torch.float32) # use fp32 for numerical stability attn_probs = F.dropout(attn_weights_float.type_as(attn_weights), p=self.dropout, training=self.training) selected_attn = torch.bmm(attn_probs, v) assert list(selected_attn.size()) == [bsz * self.num_heads, max_num_extra_indices_per_batch, self.head_dim] selected_attn_4d = selected_attn.view(bsz, self.num_heads, max_num_extra_indices_per_batch, self.head_dim) nonzero_selected_attn = selected_attn_4d[selection_padding_mask_nonzeros[0], :, selection_padding_mask_nonzeros[1]] attn[extra_attention_mask_nonzeros[::-1]] = nonzero_selected_attn.view(len(selection_padding_mask_nonzeros[0]), -1).type_as(hidden_states) context_layer = attn.transpose(0, 1) # attn shape: (seq_len, bsz, embed_dim), context_layer shape: (bsz, seq_len, embed_dim) if output_attentions: if extra_attention_mask is not None: # With global attention, return global attention probabilities only # batch_size x num_heads x max_num_global_attention_tokens x sequence_length # which is the attention weights from tokens with global attention to all tokens # It doesn't not return local attention # In case of variable number of global attantion in the rows of a batch, # attn_weights are padded with -10000.0 attention scores attn_weights = attn_weights.view(bsz, self.num_heads, max_num_extra_indices_per_batch, seq_len) else: # without global attention, return local attention probabilities # batch_size x num_heads x sequence_length x window_size # which is the attention weights of every token attending to its neighbours attn_weights = attn_weights.permute(0, 2, 1, 3) outputs = (context_layer, attn_weights) if output_attentions else (context_layer,) return outputs