DBusAI commited on
Commit
4db5b7e
1 Parent(s): 61c833e

Retrain PPO model for BipedalWalker-v3 v1

Browse files
PPO-BipedalWalker-v3.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c3202ecf0a1fa9fbe2d529f0d3c06ffe5c30d71229314149fa40e6dcfcd99b85
3
- size 170637
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c907d4e804ebfb1f188e39bc4697fc87389623c68a8e463001689e90a7bf7a9b
3
+ size 174004
PPO-BipedalWalker-v3/data CHANGED
@@ -46,13 +46,13 @@
46
  "bounded_above": "[ True True True True]",
47
  "_np_random": null
48
  },
49
- "n_envs": 6,
50
- "num_timesteps": 503808,
51
- "_total_timesteps": 500000,
52
  "_num_timesteps_at_start": 0,
53
  "seed": null,
54
  "action_noise": null,
55
- "start_time": 1652451543.2770567,
56
  "learning_rate": 0.0003,
57
  "tensorboard_log": null,
58
  "lr_schedule": {
@@ -61,26 +61,26 @@
61
  },
62
  "_last_obs": {
63
  ":type:": "<class 'numpy.ndarray'>",
64
- ":serialized:": "gAWVtQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAgAAAAAAAPw1WD6mMJY9B3HBPndPVT02AvK+W1aEP+Ag+L0BTuq/AACAP0KUgz/7UhC/qDWRvgAAgL8AAIA/XZemPruyqD4+ka4+sNS4PuGhyT7CFeI+6DwBP8/9Gj/A2lA/AACAP2cwWzyjFYE9R2RMPrw2Az5rHBe/UA2AP2zVjj41mqS/AACAP0EakT8AACq3VAr/PrNGgL8AAIA/QXmYPn9/mj7OEaE+Rq+sPsBZvj4Qjdc+D1wAP10iIT8UOlk/AACAP/UUeD5FpZc9JeC6PhHp/rzieM29j+oAPxqVDL///3+/AAAAAHe9iz8S92i+6Ev2vgAAgL8AAAAAlAiqPg18qj7x9q4++C24PsXExz6ESt8+Ij0CP8UbKD/ANXg/AACAP1re+j436yM8BMv0Piiq8zse8iO/DoGBv2Ce8L3jKjw/AACAP0p0jj8AAAAArnY4P///fz8AAAAAk9GdPquwnD6SHp8+hmOlPk/ysD4zgMM+klvgPunTBz9dNDM/AACAP7qIvD7J+DY9nMWsPsE9lbzJ2Wu+9P9/P4bZI7/8/3+/AAAAAHI7iD86IUM/9D4iv///f78AAAAAr12fPmJMoT5PIKc+HXWzPrzZxj7L4eI+AuYDP8O1HT9scVA/AACAP+LKnj60iY09bMyCPikvhzzW2oS+bj0/P5RH1L7//3+/AACAP6YpgD8EHaY94BPKvgEAgL8AAAAAXr2iPv8tpD5LIqo+amq1PiWlxz5WjuM+un0GP4RhKD8wNGI/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLBksYhpSMAUOUdJRSlC4="
65
  },
66
  "_last_episode_starts": {
67
  ":type:": "<class 'numpy.ndarray'>",
68
- ":serialized:": "gAWVeQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYGAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUjAFDlHSUUpQu"
69
  },
70
  "_last_original_obs": null,
71
  "_episode_num": 0,
72
  "use_sde": false,
73
  "sde_sample_freq": -1,
74
- "_current_progress_remaining": -0.007616000000000067,
75
  "ep_info_buffer": {
76
  ":type:": "<class 'collections.deque'>",
77
- ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITI3Qz9TPM8CUhpRSlIwBbJRN9gGMAXSUR0C0Fr1OwgTzdX2UKGgGaAloD0MIeNUD5uF4cECUhpRSlGgVTbsFaBZHQLQZB1RceKd1fZQoaAZoCWgPQwh9CRUcXrNeQJSGlFKUaBVNAAVoFkdAtB/+/zreInV9lChoBmgJaA9DCPcdw2O/KXBAlIaUUpRoFU0HBmgWR0C0IBtiH6/JdX2UKGgGaAloD0MI+yKhLacTcECUhpRSlGgVTQQGaBZHQLQh2uBczIp1fZQoaAZoCWgPQwhaZaa0fjVwQJSGlFKUaBVN8wVoFkdAtCJBBD5TInV9lChoBmgJaA9DCKYpApxeT3BAlIaUUpRoFU0FBmgWR0C0IvWqPwNLdX2UKGgGaAloD0MIBVPNrGVRcECUhpRSlGgVTd0FaBZHQLQk4N3np0R1fZQoaAZoCWgPQwiL3xRWqldwQJSGlFKUaBVNzwVoFkdAtCV6aRZED3V9lChoBmgJaA9DCEkPQ6uTAHBAlIaUUpRoFU09BmgWR0C0JfnvMKTjdX2UKGgGaAloD0MIBkg0gWJdcECUhpRSlGgVTbMFaBZHQLQnTAgxJul1fZQoaAZoCWgPQwi7mjxlNTdwQJSGlFKUaBVN7wVoFkdAtC6+MvRJE3V9lChoBmgJaA9DCFT9SufDY3BAlIaUUpRoFU2yBWgWR0C0LxXz+WGAdX2UKGgGaAloD0MIhIJStHL9W0CUhpRSlGgVTc0EaBZHQLQwyWJrLyN1fZQoaAZoCWgPQwj0iqce6WtvQJSGlFKUaBVNQAZoFkdAtDGOdEsrd3V9lChoBmgJaA9DCCBCXDl7eHBAlIaUUpRoFU2JBWgWR0C0MftXtBv8dX2UKGgGaAloD0MIRgpl4WtOcECUhpRSlGgVTe4FaBZHQLQzn/Q0GeN1fZQoaAZoCWgPQwjHSPYINaFwQJSGlFKUaBVNcwVoFkdAtDO9KdxyXHV9lChoBmgJaA9DCDKvIw4ZL3BAlIaUUpRoFU0ABmgWR0C0NJFF+d9VdX2UKGgGaAloD0MI63B0lW4YcECUhpRSlGgVTQEGaBZHQLQ840Jng511fZQoaAZoCWgPQwhfJ/Vl6WdwQJSGlFKUaBVNtgVoFkdAtD1hlNDc/XV9lChoBmgJaA9DCNREn48yL21AlIaUUpRoFU1ABmgWR0C0PkJKFqSHdX2UKGgGaAloD0MIvMywUZZocECUhpRSlGgVTa4FaBZHQLQ/g5sTFl11fZQoaAZoCWgPQwiLiGLyxg1wQJSGlFKUaBVNFQZoFkdAtD/J9uxbCHV9lChoBmgJaA9DCPa0w18TPnBAlIaUUpRoFU3vBWgWR0C0QJ44MnZ1dX2UKGgGaAloD0MI4nSSra6rcECUhpRSlGgVTZcFaBZHQLRCA/qgRK91fZQoaAZoCWgPQwhevYqMjldwQJSGlFKUaBVNuwVoFkdAtEKk22oegnV9lChoBmgJaA9DCMIv9fNmXXBAlIaUUpRoFU2/BWgWR0C0SjLe2uxKdX2UKGgGaAloD0MIZED2enercECUhpRSlGgVTXwFaBZHQLRLLUpd8iR1fZQoaAZoCWgPQwjWGd8XF2ZwQJSGlFKUaBVN3gVoFkdAtEvINlRP43V9lChoBmgJaA9DCPLs8q0PE29AlIaUUpRoFU1ABmgWR0C0TO+S8rZrdX2UKGgGaAloD0MIR+f8FEdFcECUhpRSlGgVTeMFaBZHQLROOmZmZmZ1fZQoaAZoCWgPQwi+3v3xHjZwQJSGlFKUaBVNHwZoFkdAtE+ZFpfx+nV9lChoBmgJaA9DCPorZK6MUHBAlIaUUpRoFU3WBWgWR0C0UD7c45tFdX2UKGgGaAloD0MIeJlho6yPcECUhpRSlGgVTYoFaBZHQLRQ9/x2B8R1fZQoaAZoCWgPQwh79Ib7iHBwQJSGlFKUaBVNzAVoFkdAtFHNgTh5xHV9lChoBmgJaA9DCBHEeTgBRHBAlIaUUpRoFU3NBWgWR0C0WXzHGS6ldX2UKGgGaAloD0MIE2VvKefOUECUhpRSlGgVTb4DaBZHQLRaOaSs8xN1fZQoaAZoCWgPQwhHj9/btDhwQJSGlFKUaBVNCAZoFkdAtFram3vx6XV9lChoBmgJaA9DCOsB85Cpa3BAlIaUUpRoFU3MBWgWR0C0W3jDfm9ydX2UKGgGaAloD0MIdCUC1f+jcECUhpRSlGgVTaMFaBZHQLRcvgYxcml1fZQoaAZoCWgPQwiqfqXzoWNwQJSGlFKUaBVNvgVoFkdAtF2uRuCPIXV9lChoBmgJaA9DCIz4Tsz6+G9AlIaUUpRoFU0SBmgWR0C0XyHZsbeedX2UKGgGaAloD0MI0nDK3PyOcECUhpRSlGgVTbIFaBZHQLRfempEQXh1fZQoaAZoCWgPQwjH9IQlnnlwQJSGlFKUaBVNrgVoFkdAtGASUgSvknV9lChoBmgJaA9DCHKG4o43lHBAlIaUUpRoFU2bBWgWR0C0Zx4a5wwTdX2UKGgGaAloD0MIpkV9kvuicECUhpRSlGgVTYEFaBZHQLRoPBSk0rN1fZQoaAZoCWgPQwii0/NuLM5cQJSGlFKUaBVNtwRoFkdAtGh7yrgfl3V9lChoBmgJaA9DCO0RaoZUaShAlIaUUpRoFU1nAmgWR0C0amyVW0Z4dX2UKGgGaAloD0MI6J/gYkXaY0CUhpRSlGgVTV4FaBZHQLRqgxR2r4p1fZQoaAZoCWgPQwhsIjMXeKBwQJSGlFKUaBVNsAVoFkdAtGsmSEDhcnV9lChoBmgJaA9DCK+ZfLONNHBAlIaUUpRoFU3pBWgWR0C0a/GcawUydX2UKGgGaAloD0MIGqN1VHWBcECUhpRSlGgVTbkFaBZHQLRsUyfcvdx1fZQoaAZoCWgPQwgQQGoT54pwQJSGlFKUaBVNnAVoFkdAtG2QeJYT03V9lChoBmgJaA9DCGfxYmGIZ15AlIaUUpRoFU3dBGgWR0C0dl10xM37dX2UKGgGaAloD0MIb/HwnkPicECUhpRSlGgVTVcFaBZHQLR2vMRYigV1fZQoaAZoCWgPQwgbRkHw+EBKwJSGlFKUaBVNSwFoFkdAtHeRZpztC3V9lChoBmgJaA9DCDTyecUTLHBAlIaUUpRoFU3xBWgWR0C0eAW5tm+TdX2UKGgGaAloD0MIzhq8rwrYcECUhpRSlGgVTWUFaBZHQLR4vCI1tO51fZQoaAZoCWgPQwg9npYfeF9wQJSGlFKUaBVN2gVoFkdAtHjHokiUxHV9lChoBmgJaA9DCIrNx7UhAnBAlIaUUpRoFU0RBmgWR0C0etD2rXDndX2UKGgGaAloD0MImQ0yyQhXcECUhpRSlGgVTcoFaBZHQLR8TeOn2qV1fZQoaAZoCWgPQwizeRwGc5VwQJSGlFKUaBVNlQVoFkdAtINl7TlT33V9lChoBmgJaA9DCAM/qmG/DlPAlIaUUpRoFUu/aBZHQLSDcfaHsTp1fZQoaAZoCWgPQwgTYi6pWodwQJSGlFKUaBVNqgVoFkdAtIPyO7xusXV9lChoBmgJaA9DCAdi2cyhkXBAlIaUUpRoFU2tBWgWR0C0hKwc5sCUdX2UKGgGaAloD0MIn5PeNz4ocECUhpRSlGgVTREGaBZHQLSFEauOjqR1fZQoaAZoCWgPQwisOUAwR65YwJSGlFKUaBVLZmgWR0C0hack2P1ddX2UKGgGaAloD0MI5l31gPm2bkCUhpRSlGgVTUAGaBZHQLSHUBciW3V1fZQoaAZoCWgPQwj4Nv3Zz1JwQJSGlFKUaBVNzwVoFkdAtIkD7bcoIHV9lChoBmgJaA9DCKH3xhBAC3BAlIaUUpRoFU06BmgWR0C0iV0bo8p1dX2UKGgGaAloD0MIZohjXdxucECUhpRSlGgVTdQFaBZHQLSJhcFyJbd1fZQoaAZoCWgPQwiutmJ/2QZwQJSGlFKUaBVNFgZoFkdAtIpxFDv3J3V9lChoBmgJaA9DCJQRF4DGinBAlIaUUpRoFU2TBWgWR0C0isEbLlmwdX2UKGgGaAloD0MIBabTug02OMCUhpRSlGgVTfgBaBZHQLSTKGc4HX51fZQoaAZoCWgPQwiTAgtgyjlwQJSGlFKUaBVN+QVoFkdAtJOj0J4SpXV9lChoBmgJaA9DCBLcSNkie1FAlIaUUpRoFU26A2gWR0C0k6+tCAtndX2UKGgGaAloD0MIBwjm6PF9cECUhpRSlGgVTbcFaBZHQLSVQGipNsZ1fZQoaAZoCWgPQwj8/s2LE6NwQJSGlFKUaBVNhwVoFkdAtJWYsbvPT3V9lChoBmgJaA9DCNZuu9BcUzdAlIaUUpRoFU28AmgWR0C0lcjJEH+qdX2UKGgGaAloD0MIqaPjauTFcECUhpRSlGgVTXEFaBZHQLSWyOvdM0x1fZQoaAZoCWgPQwjZImk3+sRwQJSGlFKUaBVNfgVoFkdAtJjY1LrX2HV9lChoBmgJaA9DCBf03hiCsnBAlIaUUpRoFU2QBWgWR0C0mN/MB6rvdX2UKGgGaAloD0MIIsK/CNqrcECUhpRSlGgVTVcFaBZHQLShDIRAbAF1fZQoaAZoCWgPQwiITPkQ1H9wQJSGlFKUaBVNtQVoFkdAtKER78ejmHV9lChoBmgJaA9DCBHhXwRNWnBAlIaUUpRoFU25BWgWR0C0oZKN2ki2dX2UKGgGaAloD0MIAIxn0NAlbECUhpRSlGgVTUAGaBZHQLSjAHR1HON1fZQoaAZoCWgPQwiEDU+vFItwQJSGlFKUaBVNsQVoFkdAtKSP8MuvlnV9lChoBmgJaA9DCF/svfjiPXBAlIaUUpRoFU3MBWgWR0C0pLBaouPFdX2UKGgGaAloD0MIFeP8TSiPcECUhpRSlGgVTZkFaBZHQLSmI8Hv+fh1fZQoaAZoCWgPQwimme510ilwQJSGlFKUaBVN6QVoFkdAtKaSb+cYqHV9lChoBmgJaA9DCCU/4lfsSXBAlIaUUpRoFU3GBWgWR0C0pwKcNH6NdX2UKGgGaAloD0MIuFZ72MsRcECUhpRSlGgVTSQGaBZHQLSvNEkjX4F1fZQoaAZoCWgPQwi+hXXj3REawJSGlFKUaBVNIAJoFkdAtK9gj9n9N3V9lChoBmgJaA9DCJI9Qs0QCXBAlIaUUpRoFU3+BWgWR0C0sLFpoK2KdX2UKGgGaAloD0MIp804DVEzcECUhpRSlGgVTfoFaBZHQLSwzFV1fVt1fZQoaAZoCWgPQwg4LXjR11lwQJSGlFKUaBVN5wVoFkdAtLKnnxJ/X3V9lChoBmgJaA9DCGe0VUlkGHBAlIaUUpRoFU0xBmgWR0C0s1XscABDdX2UKGgGaAloD0MI9UiD21qBcECUhpRSlGgVTZsFaBZHQLS08rK/2011fZQoaAZoCWgPQwg0uoPY2U9wQJSGlFKUaBVN3wVoFkdAtLVXbN8mbHVlLg=="
78
  },
79
  "ep_success_buffer": {
80
  ":type:": "<class 'collections.deque'>",
81
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
82
  },
83
- "_n_updates": 1148,
84
  "n_steps": 2048,
85
  "gamma": 0.999,
86
  "gae_lambda": 0.95,
@@ -88,7 +88,7 @@
88
  "vf_coef": 0.5,
89
  "max_grad_norm": 0.5,
90
  "batch_size": 64,
91
- "n_epochs": 7,
92
  "clip_range": {
93
  ":type:": "<class 'function'>",
94
  ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/HCj1wo9cKhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
 
46
  "bounded_above": "[ True True True True]",
47
  "_np_random": null
48
  },
49
+ "n_envs": 32,
50
+ "num_timesteps": 3014656,
51
+ "_total_timesteps": 3000000,
52
  "_num_timesteps_at_start": 0,
53
  "seed": null,
54
  "action_noise": null,
55
+ "start_time": 1652454686.2842703,
56
  "learning_rate": 0.0003,
57
  "tensorboard_log": null,
58
  "lr_schedule": {
 
61
  },
62
  "_last_obs": {
63
  ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVdQwAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYADAAAAAAAAJdoFT/XVn+9Wc/xPila5LsPJVO/oDRvvNDkZr4+L5I+AAAAAAIRYT+OrtS+3MBePgvSf78AAAAAE8qGPvJRiD5KF40+jHuUPtVHoD6edbE+xqXKPvGi9j487CQ/AACAP11WsD6LgwA8CN8LPwgyebwlmTC/SHaZv6DmtDxz9Xk/AACAP41ojD8Xmag+MJUaP/3/f78AAAAAGHuXPl36lz6Hhpw+70SmPql8tT5OtMw+FtTvPoHgFD9OL1E/AACAP5XVMz8IKHO9X03wPvbr9Dv7AE2/AAAAM1ABQ74t/zc+AACAP9Lohj8AAIA/roArP7Vr8L4AAAAAaNSdPmdwnj6ETKI+SCOqPhiGtj6/Fck+YsnkPhizCT++kD8/AACAP3vbUz6ODGg9vPazPpnqhT0iXwG/BQCAP4DTVL4BAIC/AAAAAPuQjz+vbw2+wPt6vQEAgL8AAIA/Ja+ePpLhnj7n4qI+VierPvzhuj6VM9M+yO37PvRSID+fB14/AACAPzmmFz/86AO+kmXwPgF6aj0SvVW/AABqudBRmr62GQw/AACAPz7CnD9ZwN4/3JQePw3/f78AAAAANcuNPlLVkD6ljpc+QPiiPn7Wsj64tsk++lDsPkpUET8gg0M/AACAP/J3rT5lh3E9j3abPT4pDrySxzS+FOa2vngzAr8gz4+6AACAPzZWjD9KM4y+UCTnvQAAgL8AAAAAbXWiPr1NpD7NDao+iGu0Pu3WxD5RCN4+/qwCP3RAIz9pqWE/AACAP5IWpz6h5IC7auu4PlEWkL0nGAO///9/P84RGb/9/3+/AAAAAIo8iz+IEao+Ul+sPv3/f78AAAAArB6UPiZqmj5cA6Q+yeexPqx7wj5xqt4+0GkIP+V/NT8AAIA/AACAPwObSz7UAFc9/cuVPmwAjbxtdB++9/9/P9xXBr/9/3+/AAAAACXZgz/N81o/YMjlvoO39r8AAAAASQGzPrMJtT6xX7s+tcvGPjfj2D55pfQ+KfwPP1AyND+fpXg/AACAP0uIsT7KDRQ9YBfnPpeTy73skmq8WvIMvyy2Ir8AAAi2AACAP5Jljj9rW2Y/gKQTvgAAgL8AAAAABuepPlikrT4gabU+8dzBPgLN0T6wpes+ycYHPxLtIz/XNVg/AACAP9dwxD7jELs7pzXxPkBbNr0JvJa+MA5ev+rVCr9tW7w+AACAP2veRz+btPa+ErWePvT/fz8AAIA/NbKXPupomz7P76I+1JWuPkl5vj4Oa9w+CO4DP5UuJj8AAIA/AACAP8e11j42hQW+/YDqPvivZz3FvFW/AEBeuAC56TsDgEs/AAAAAGAGhT+I/n+/nGqVPusAgD8AAAAAaZKLPr8djT4QDpI+r2WZPpNXpT5xUbk+Dz3XPqBZCT86x0o/AACAP/l+fD7qLiq+MSYLPyEgbLvl71S/APR+uyizdT4V7X4/AAAAABOwjD9xTMI/wOJnvcf6f78AAIA/6XSOPt/fkD51DJg+nm+kPmaVsz5c0s0+Aib7PrE/Jz8AAIA/AACAP3EFPT+Ttbq9Zne4PjqOgTtlu1W/ANgdOiCcWb7JHLc+AACAP2bTjz8AAMi36P4EP98IgL8AAAAA8HOaPnXOmz5kQqE+alCrPvXxuj47aNI+j0D4Po+8Gj+BU1E/AACAP3AUEz91LgC9l+fGPszNw73+Pa++AgCAP4y/PL9FSQm/AACAP0dRXD+t1Ew/IF4XvqHC1D4AAIA/hu2SPh6lkz6Gy5c+kOGfPoR8rT6NrcM+/WHlPtQcET/nm1c/AACAP2kQBT8uw6K9pkETP9Qoob3BvFW/AAAAANC8c76Bz6o+AACAP+rCnD+Ee8w/AFGgPQEAgL8AAAAA2WaKPnfdjD5+/ZI+KhaePmK5rz4t7sk+xYbtPvThET8jbkQ/AACAP146pj5S+jU91OKFPl81mrw9tUE9+/9/v/DQDr/w6IM+AACAP7pEkT8AAAAAUInoPZXLcD8AAAAA7MmtPmZirT4qxLE+Om67Pr5xzD7u7eU+yDsIP29qLT/Z73Q/AACAP2VuAT8q/v+9vLryPqWfzbxhulW/AADoNQCkbb0HxRA/AAAAANJJgj+KNAQ/spikPgEAgL8AAAAAIG2SPkFjkz7F8pc+9jWhPliXrj6/b8E+/IrfPj1tBT+cky4/AACAPyW2ij5U0TY9XearPjfY4D3dBlK/8HJTPsD6CD4A/3+/AAAAAFUskT8AAOA0gNpOPa/Jf78AAIA/z4OIPtuviT7qh44+hvaYPmIUqD6Iob0+trTgPnMnFj9C1m4/AACAP1g6sj4lIQa8SqOxPv4cGDsrW7G+a+4ZP/CbJb8AAIC/AAAAAMePej8OqF4/zOXNvv3/fz8AAAAAeI6pPvl1qj4zbbA+cHG6PhXCyT7a4uA++QwEP5F+KT+DvXk/AACAP1ax9b1075w59F0ePkFMeb1JCzs9Xa8/v1h46r5o5x8+AAAAAIRJjj9dl4i+2CMevwAAAAAAAAAARTC5PuRMuT5Gpbs+h77CPsL+zz45cOo+w+8FP7S5ID9V8l8/AACAP1jNiT5+niG+cBkHP3Ef1zqKvFW/AKgNOmShOz6rH3A/AACAP4I+kD8AAMG30OJfPqMIgL8AAAAA3OeWPjDslz4mDp0+CKGmPn7LtD50Bck+cKvoPhTuDz+qJlI/AACAP8Y0uT4dQ0W8ctyyPh935L0ddRs98zcBP5wXK793sh+/AACAP+clfz8BAIA/KIdYvgEAgD8AAAAAw2SrPg1XrT5N3bM+ErG+PmnUzT5fIOM+J8wCPyJAHz9duk8/AACAPwXo4T6uQS49rdu5PnrTzjwrMNq+5f9/v/5+Ar96MAs/AAAAAI2Mcj/3FKW+yEA3vvz/fz8AAAAA0pySPvQvlT5qhps+BlmlPtJFtD6d5sk+HZ/vPu6AFz+BvlM/AACAPyqQuD5fg1E9AZGXPqI0AT5xVze/+/9/P+DM7b0BAIC/AAAAACiNiT8jnMa+wAz4PJnvzr4AAIA/i6aVPtwTlj4GFZk+XfqePlqFqD6j1Lk+JCLYPs9iAz8AaTc/AACAP1YvFz9Uct89K9lcPtEL2TyqCxm/3NLuvpCy8L5IJWE/AAAAAFO3Fj825JS/UNzIPQAAgD8AAAAARZuzPm+ltT7gALw+t3bHPsmd2T7sd/U+BXgQPyjuMT+NU3g/AACAPwYUEz9pfRc9B9LAPjRfYz1FbAm/ucR/v/Ql3L7Dkhw/AAAAAFWPOT/pkx6/yLatPkD/fz8AAAAATlObPuEWnT5OlqI+iWOsPpKyuj6RN9I+Cdb6PlDfGj9ByE4/AACAPxVzOz4UJba8cWr+Pvwlr72EWL++AgCAP0TyAL8BAIC/AAAAAA+2hT+9APk+JOjEvnvJY78AAIA/TXKjPv/vpz7Pua4+98q5Poonyj4a8N8+FBb+PvWNGj85N1Y/AACAPyTm2j6BGhY9YRvAPs4V67tJULG+dDt8PzIrMr8AAIC/AAAAAKHBdT8+cx0/QA8GvwEAgL8AAIA/NKmXPjbTmT64xJ8+vDarPoAHvD5Nf9M+d271PqPyGD9EjFI/AACAPwzGAT/Ipke9TR29Pu73ODz0Nz+//nxYP3BHTj0AAIC/AAAAAMoWkD8AAAAAKG+ePfv/f78AAAAA0KOePqZhoD7EiqU+UiysPiBltz7ovMg+j7nlPg21DD9960Q/AACAP+DAoT4EMSk9xl6dPn3KDD69DS6/AgCAP8BX9LwBAIC/AAAAAAHPhj+aH3y+wJcovgAAgL8AAIA/XpKfPklioT6xR6U+Je+sPoUCuT4e2Ms+8X7qPgezED/ek0Q/AACAP2wfBj9Uco29xpkAP6rX8DwB7k2/AACAM8C8Vb2Qb8c+AACAP5k7fj8a5qq+yOS5PgAAgD8AAAAAPY+dPn+TnT7sR6A+55yoPrO4tz4VxM0+VdrxPpnpGT+qZFk/AACAP1zMED/jIkI92b7UPsfSiTz2QxG/dXaRv/SDq74qQRw/AACAPysTfj/YoV6//CduPp10UD8AAAAAlFihPqgtoz6i46g+MS+zPsx9wz4Eg9w+38cBP+EpJT/jxmU/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLIEsYhpSMAUOUdJRSlC4="
65
  },
66
  "_last_episode_starts": {
67
  ":type:": "<class 'numpy.ndarray'>",
68
+ ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
69
  },
70
  "_last_original_obs": null,
71
  "_episode_num": 0,
72
  "use_sde": false,
73
  "sde_sample_freq": -1,
74
+ "_current_progress_remaining": -0.004885333333333408,
75
  "ep_info_buffer": {
76
  ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILH5TWOkRcUCUhpRSlIwBbJRNKgWMAXSUR0C1dDtCNS62dX2UKGgGaAloD0MI2A3bFuWJcUCUhpRSlGgVTbwEaBZHQLV0/GC7K7t1fZQoaAZoCWgPQwjbGDvhJR9xQJSGlFKUaBVNBwVoFkdAtXU33VTaTXV9lChoBmgJaA9DCEwceSByFHFAlIaUUpRoFU0cBWgWR0C1dU9cW0qpdX2UKGgGaAloD0MIGa2jqkkrcUCUhpRSlGgVTfcEaBZHQLV2mz19ORF1fZQoaAZoCWgPQwgzbmqgOS9xQJSGlFKUaBVNKgVoFkdAtXg5pDeCTXV9lChoBmgJaA9DCCjxuRMsa3FAlIaUUpRoFU26BGgWR0C1eGCAhB7edX2UKGgGaAloD0MIs0KR7idDcUCUhpRSlGgVTfwEaBZHQLV4txdpqRF1fZQoaAZoCWgPQwgoucMmMklxQJSGlFKUaBVN1ARoFkdAtXjoHpr1unV9lChoBmgJaA9DCLVU3o5wRnFAlIaUUpRoFU34BGgWR0C1ei58fFJhdX2UKGgGaAloD0MImdTQBmBLVsCUhpRSlGgVS3RoFkdAtXqQ43m3fHV9lChoBmgJaA9DCHcstklFUnFAlIaUUpRoFU3aBGgWR0C1eww6Mir1dX2UKGgGaAloD0MIjuczoN5CcUCUhpRSlGgVTQYFaBZHQLV8kbJwKjV1fZQoaAZoCWgPQwhPzlDc8V5xQJSGlFKUaBVNxwRoFkdAtX1vWtlqanV9lChoBmgJaA9DCDscXaW7I3FAlIaUUpRoFU3fBGgWR0C1fYKfapPzdX2UKGgGaAloD0MIzc03orsrcUCUhpRSlGgVTRoFaBZHQLV9wz1bqyJ1fZQoaAZoCWgPQwiLUkKwqhZxQJSGlFKUaBVNHAVoFkdAtX3LdcjZ+XV9lChoBmgJaA9DCMx/SL+9F3FAlIaUUpRoFU0KBWgWR0C1fg4z3yqddX2UKGgGaAloD0MIKZZbWo3QcECUhpRSlGgVTVMFaBZHQLV+uZiuuA91fZQoaAZoCWgPQwiy17s/XkNxQJSGlFKUaBVN9wRoFkdAtX8PyZrpJXV9lChoBmgJaA9DCPfHe9WKMHFAlIaUUpRoFU30BGgWR0C1f0/MGHHndX2UKGgGaAloD0MIRZvj3CZFcUCUhpRSlGgVTd0EaBZHQLV/dqu8sc11fZQoaAZoCWgPQwhKuJBH8FBxQJSGlFKUaBVN8wRoFkdAtX99ChN/OXV9lChoBmgJaA9DCA3DR8QUg3FAlIaUUpRoFU21BGgWR0C1f/+7UXpGdX2UKGgGaAloD0MIFQDjGfR5cUCUhpRSlGgVTb8EaBZHQLWAYBrN4aB1fZQoaAZoCWgPQwiH4SNiyiRxQJSGlFKUaBVNBAVoFkdAtYB6ZkTYd3V9lChoBmgJaA9DCNnuHqA7M3FAlIaUUpRoFU31BGgWR0C1gRvBi1ArdX2UKGgGaAloD0MIpmH4iNhXcUCUhpRSlGgVTdEEaBZHQLWCBlxwQ191fZQoaAZoCWgPQwhPrb66alpxQJSGlFKUaBVN5wRoFkdAtYTJzltCRnV9lChoBmgJaA9DCJGBPLs8lXFAlIaUUpRoFU2sBGgWR0C1hdOiaiK0dX2UKGgGaAloD0MISwD+KZUwcUCUhpRSlGgVTQYFaBZHQLWF9gccU/R1fZQoaAZoCWgPQwj9a3nletMkwJSGlFKUaBVN5AFoFkdAtYZvUtqYZ3V9lChoBmgJaA9DCG4T7pU5W3FAlIaUUpRoFU3SBGgWR0C1hnJHy3CsdX2UKGgGaAloD0MIVOV7RqL3cECUhpRSlGgVTTMFaBZHQLWGl7/XGwR1fZQoaAZoCWgPQwgm5e5z/E5xQJSGlFKUaBVN3wRoFkdAtYbqEQGwA3V9lChoBmgJaA9DCMhAnl0+dXFAlIaUUpRoFU24BGgWR0C1h3fCyhSMdX2UKGgGaAloD0MI1BBV+LNbcUCUhpRSlGgVTeIEaBZHQLWIJaLGaQV1fZQoaAZoCWgPQwgqVDcXf2tgQJSGlFKUaBVNRgRoFkdAtYjT4O+ZgHV9lChoBmgJaA9DCCx+U1hp2nBAlIaUUpRoFU1CBWgWR0C1iTmMCLdfdX2UKGgGaAloD0MIbD8Z48NDcUCUhpRSlGgVTesEaBZHQLWJl6FM7EJ1fZQoaAZoCWgPQwhJRzmYjXtxQJSGlFKUaBVNwARoFkdAtYsOUD+zdHV9lChoBmgJaA9DCJjbvdznPHFAlIaUUpRoFU0UBWgWR0C1i+milBQfdX2UKGgGaAloD0MI7PZZZSZHcUCUhpRSlGgVTd4EaBZHQLWM81WKdhB1fZQoaAZoCWgPQwj2X+emjXNxQJSGlFKUaBVNrgRoFkdAtY0iWLP2PHV9lChoBmgJaA9DCBBAahPnAHFAlIaUUpRoFU0WBWgWR0C1jh7Y5DJEdX2UKGgGaAloD0MIu7ciMYF8cUCUhpRSlGgVTagEaBZHQLW/tjUd7v51fZQoaAZoCWgPQwjeq1Ym/JlxQJSGlFKUaBVNoQRoFkdAtcCJNxlxwXV9lChoBmgJaA9DCH9OQX42ZXFAlIaUUpRoFU3SBGgWR0C1wcaJQ+EAdX2UKGgGaAloD0MI2C0CY30McUCUhpRSlGgVTeoEaBZHQLXB3RsuWbB1fZQoaAZoCWgPQwgBvtu88e5wQJSGlFKUaBVN9gRoFkdAtcIGzdDYy3V9lChoBmgJaA9DCJZ2ai73rHFAlIaUUpRoFU2dBGgWR0C1wlT9n9NvdX2UKGgGaAloD0MIfbH34otGcUCUhpRSlGgVTfUEaBZHQLXDASX+l0p1fZQoaAZoCWgPQwh1VgvssUBxQJSGlFKUaBVN0wRoFkdAtcNQOlO45XV9lChoBmgJaA9DCMWrrG3KwHBAlIaUUpRoFU1qBWgWR0C1w3isbNr1dX2UKGgGaAloD0MI++qqQK04cUCUhpRSlGgVTfwEaBZHQLXD4xrSE151fZQoaAZoCWgPQwgDCB9KdBZxQJSGlFKUaBVN9gRoFkdAtcRT8IiTuHV9lChoBmgJaA9DCJ4I4jwcX3FAlIaUUpRoFU3eBGgWR0C1xF4BBAv+dX2UKGgGaAloD0MIRIXq5iJVcUCUhpRSlGgVTeIEaBZHQLXFjVENOM51fZQoaAZoCWgPQwhXXvI/efdwQJSGlFKUaBVNJAVoFkdAtcXsznA6+3V9lChoBmgJaA9DCPSmIhXGVnFAlIaUUpRoFU3FBGgWR0C1xh5pi7TVdX2UKGgGaAloD0MIaNDQP0F1cUCUhpRSlGgVTcYEaBZHQLXIg2A5Jbt1fZQoaAZoCWgPQwhiMepaO35xQJSGlFKUaBVNswRoFkdAtcmCjSG8EnV9lChoBmgJaA9DCPEsQUbAXnFAlIaUUpRoFU3aBGgWR0C1yqifUWl/dX2UKGgGaAloD0MIucX83NBRcUCUhpRSlGgVTe4EaBZHQLXLGDwYtQN1fZQoaAZoCWgPQwjsMZHSbCZxQJSGlFKUaBVN5gRoFkdAtcs0qNIbwXV9lChoBmgJaA9DCDupL0t7LnFAlIaUUpRoFU0QBWgWR0C1y3T/2kBTdX2UKGgGaAloD0MINdJSebuVcUCUhpRSlGgVTbAEaBZHQLXLj/mDDj11fZQoaAZoCWgPQwjOVfMckdRwQJSGlFKUaBVNQgVoFkdAtcu0E6kqMHV9lChoBmgJaA9DCGL4iJgSKHFAlIaUUpRoFU39BGgWR0C1y/nXyy2QdX2UKGgGaAloD0MIibFMv8RfcUCUhpRSlGgVTcIEaBZHQLXM3JKaodd1fZQoaAZoCWgPQwjpJ5zdGjpxQJSGlFKUaBVN7wRoFkdAtc0kYQ8OkXV9lChoBmgJaA9DCF73ViQmqXFAlIaUUpRoFU2dBGgWR0C1zxNpZfUndX2UKGgGaAloD0MIQ+OJII7QcECUhpRSlGgVTU4FaBZHQLXPSoegctJ1fZQoaAZoCWgPQwhxGw3g7XBxQJSGlFKUaBVNuwRoFkdAtdCRMmF8HHV9lChoBmgJaA9DCNGvrZ8+bnFAlIaUUpRoFU3BBGgWR0C10NivC/GmdX2UKGgGaAloD0MIe6GA7SDccECUhpRSlGgVTVcFaBZHQLXQ61D0Dlp1fZQoaAZoCWgPQwg983LY/ZVxQJSGlFKUaBVNswRoFkdAtdGlVWCEpXV9lChoBmgJaA9DCCtsBrggw1xAlIaUUpRoFU3SA2gWR0C10h8R15jZdX2UKGgGaAloD0MIuI/cmrRtcUCUhpRSlGgVTbsEaBZHQLXSzH4Glhx1fZQoaAZoCWgPQwhbXrnedhpxQJSGlFKUaBVNCgVoFkdAtdMgXsPatnV9lChoBmgJaA9DCFyRmKBGcnFAlIaUUpRoFU2rBGgWR0C11BkGRmsedX2UKGgGaAloD0MId9mvO12GcUCUhpRSlGgVTbAEaBZHQLXUYY77sOZ1fZQoaAZoCWgPQwgWTtL8cWRxQJSGlFKUaBVN0ARoFkdAtdSeVt4zJ3V9lChoBmgJaA9DCDJaR1XTd3FAlIaUUpRoFU2/BGgWR0C11N29tdiVdX2UKGgGaAloD0MIzCcrhqtucUCUhpRSlGgVTbcEaBZHQLXVapvP1L91fZQoaAZoCWgPQwg91SE3w3dxQJSGlFKUaBVN1wRoFkdAtda9ha1Ti3V9lChoBmgJaA9DCO52vTSFbHFAlIaUUpRoFU3LBGgWR0C11wP1tfoidX2UKGgGaAloD0MI6Ih8l1JmcUCUhpRSlGgVTdsEaBZHQLXXSLw4KhN1fZQoaAZoCWgPQwjYSX1Z2gZxQJSGlFKUaBVNJwVoFkdAtdd4tapxWHV9lChoBmgJaA9DCK65o/9lfHFAlIaUUpRoFU20BGgWR0C119bNB4UvdX2UKGgGaAloD0MIOWItPgVNcUCUhpRSlGgVTeMEaBZHQLXYLi2lVLl1fZQoaAZoCWgPQwhb6bXZ2HtxQJSGlFKUaBVNyQRoFkdAtdhS2y9mH3V9lChoBmgJaA9DCDnVWpgFdmFAlIaUUpRoFU02BGgWR0C12VhkI5YHdX2UKGgGaAloD0MIcov5uaFFcUCUhpRSlGgVTe8EaBZHQLXbMKZ2IO91fZQoaAZoCWgPQwg2PL1SFqRxQJSGlFKUaBVNpQRoFkdAtdyVZA6dUnV9lChoBmgJaA9DCFiNJayNdXFAlIaUUpRoFU3IBGgWR0C13P6EFnqWdX2UKGgGaAloD0MIoBnEB/Y+cUCUhpRSlGgVTegEaBZHQLXdB5NGmUJ1fZQoaAZoCWgPQwghkiHHlopxQJSGlFKUaBVNvQRoFkdAtd1KDyvs7nV9lChoBmgJaA9DCMhdhClKj3FAlIaUUpRoFU23BGgWR0C13VodZJTVdX2UKGgGaAloD0MIs+veioSFcUCUhpRSlGgVTa8EaBZHQLXdhLFn7Hh1ZS4="
78
  },
79
  "ep_success_buffer": {
80
  ":type:": "<class 'collections.deque'>",
81
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
82
  },
83
+ "_n_updates": 620,
84
  "n_steps": 2048,
85
  "gamma": 0.999,
86
  "gae_lambda": 0.95,
 
88
  "vf_coef": 0.5,
89
  "max_grad_norm": 0.5,
90
  "batch_size": 64,
91
+ "n_epochs": 10,
92
  "clip_range": {
93
  ":type:": "<class 'function'>",
94
  ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/HCj1wo9cKhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
PPO-BipedalWalker-v3/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:35515a12c916cb6f51d5916cb89892e8100c754c51def7435d3d5a356a8f245c
3
  size 101783
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e871538b1d3be68074af0ff0ec19c0ad39482e1e5fa04a6e9b0f4b7924a68dc
3
  size 101783
PPO-BipedalWalker-v3/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f99ee6dbe7525bc345f7077e4e254d6177daa30201b7a2b651f17c4418e74551
3
  size 51710
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d2677e419251da92bdd4e9d5e17dd65d0ada6622671a82a55e6e3ddcfe5d5019
3
  size 51710
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: 228.95 +/- 101.34
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: 303.05 +/- 1.79
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbc1a8f2680>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbc1a8f2710>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbc1a8f27a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbc1a8f2830>", "_build": "<function ActorCriticPolicy._build at 0x7fbc1a8f28c0>", "forward": "<function ActorCriticPolicy.forward at 0x7fbc1a8f2950>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbc1a8f29e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fbc1a8f2a70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbc1a8f2b00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbc1a8f2b90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbc1a8f2c20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fbc1a945390>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVPwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLGIWUjAFDlHSUUpSMBGhpZ2iUaBIolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSxiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsYhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [24], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVdwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_np_random": null}, "n_envs": 6, "num_timesteps": 503808, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652451543.2770567, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVtQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAgAAAAAAAPw1WD6mMJY9B3HBPndPVT02AvK+W1aEP+Ag+L0BTuq/AACAP0KUgz/7UhC/qDWRvgAAgL8AAIA/XZemPruyqD4+ka4+sNS4PuGhyT7CFeI+6DwBP8/9Gj/A2lA/AACAP2cwWzyjFYE9R2RMPrw2Az5rHBe/UA2AP2zVjj41mqS/AACAP0EakT8AACq3VAr/PrNGgL8AAIA/QXmYPn9/mj7OEaE+Rq+sPsBZvj4Qjdc+D1wAP10iIT8UOlk/AACAP/UUeD5FpZc9JeC6PhHp/rzieM29j+oAPxqVDL///3+/AAAAAHe9iz8S92i+6Ev2vgAAgL8AAAAAlAiqPg18qj7x9q4++C24PsXExz6ESt8+Ij0CP8UbKD/ANXg/AACAP1re+j436yM8BMv0Piiq8zse8iO/DoGBv2Ce8L3jKjw/AACAP0p0jj8AAAAArnY4P///fz8AAAAAk9GdPquwnD6SHp8+hmOlPk/ysD4zgMM+klvgPunTBz9dNDM/AACAP7qIvD7J+DY9nMWsPsE9lbzJ2Wu+9P9/P4bZI7/8/3+/AAAAAHI7iD86IUM/9D4iv///f78AAAAAr12fPmJMoT5PIKc+HXWzPrzZxj7L4eI+AuYDP8O1HT9scVA/AACAP+LKnj60iY09bMyCPikvhzzW2oS+bj0/P5RH1L7//3+/AACAP6YpgD8EHaY94BPKvgEAgL8AAAAAXr2iPv8tpD5LIqo+amq1PiWlxz5WjuM+un0GP4RhKD8wNGI/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLBksYhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVeQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYGAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUjAFDlHSUUpQu"}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITI3Qz9TPM8CUhpRSlIwBbJRN9gGMAXSUR0C0Fr1OwgTzdX2UKGgGaAloD0MIeNUD5uF4cECUhpRSlGgVTbsFaBZHQLQZB1RceKd1fZQoaAZoCWgPQwh9CRUcXrNeQJSGlFKUaBVNAAVoFkdAtB/+/zreInV9lChoBmgJaA9DCPcdw2O/KXBAlIaUUpRoFU0HBmgWR0C0IBtiH6/JdX2UKGgGaAloD0MI+yKhLacTcECUhpRSlGgVTQQGaBZHQLQh2uBczIp1fZQoaAZoCWgPQwhaZaa0fjVwQJSGlFKUaBVN8wVoFkdAtCJBBD5TInV9lChoBmgJaA9DCKYpApxeT3BAlIaUUpRoFU0FBmgWR0C0IvWqPwNLdX2UKGgGaAloD0MIBVPNrGVRcECUhpRSlGgVTd0FaBZHQLQk4N3np0R1fZQoaAZoCWgPQwiL3xRWqldwQJSGlFKUaBVNzwVoFkdAtCV6aRZED3V9lChoBmgJaA9DCEkPQ6uTAHBAlIaUUpRoFU09BmgWR0C0JfnvMKTjdX2UKGgGaAloD0MIBkg0gWJdcECUhpRSlGgVTbMFaBZHQLQnTAgxJul1fZQoaAZoCWgPQwi7mjxlNTdwQJSGlFKUaBVN7wVoFkdAtC6+MvRJE3V9lChoBmgJaA9DCFT9SufDY3BAlIaUUpRoFU2yBWgWR0C0LxXz+WGAdX2UKGgGaAloD0MIhIJStHL9W0CUhpRSlGgVTc0EaBZHQLQwyWJrLyN1fZQoaAZoCWgPQwj0iqce6WtvQJSGlFKUaBVNQAZoFkdAtDGOdEsrd3V9lChoBmgJaA9DCCBCXDl7eHBAlIaUUpRoFU2JBWgWR0C0MftXtBv8dX2UKGgGaAloD0MIRgpl4WtOcECUhpRSlGgVTe4FaBZHQLQzn/Q0GeN1fZQoaAZoCWgPQwjHSPYINaFwQJSGlFKUaBVNcwVoFkdAtDO9KdxyXHV9lChoBmgJaA9DCDKvIw4ZL3BAlIaUUpRoFU0ABmgWR0C0NJFF+d9VdX2UKGgGaAloD0MI63B0lW4YcECUhpRSlGgVTQEGaBZHQLQ840Jng511fZQoaAZoCWgPQwhfJ/Vl6WdwQJSGlFKUaBVNtgVoFkdAtD1hlNDc/XV9lChoBmgJaA9DCNREn48yL21AlIaUUpRoFU1ABmgWR0C0PkJKFqSHdX2UKGgGaAloD0MIvMywUZZocECUhpRSlGgVTa4FaBZHQLQ/g5sTFl11fZQoaAZoCWgPQwiLiGLyxg1wQJSGlFKUaBVNFQZoFkdAtD/J9uxbCHV9lChoBmgJaA9DCPa0w18TPnBAlIaUUpRoFU3vBWgWR0C0QJ44MnZ1dX2UKGgGaAloD0MI4nSSra6rcECUhpRSlGgVTZcFaBZHQLRCA/qgRK91fZQoaAZoCWgPQwhevYqMjldwQJSGlFKUaBVNuwVoFkdAtEKk22oegnV9lChoBmgJaA9DCMIv9fNmXXBAlIaUUpRoFU2/BWgWR0C0SjLe2uxKdX2UKGgGaAloD0MIZED2enercECUhpRSlGgVTXwFaBZHQLRLLUpd8iR1fZQoaAZoCWgPQwjWGd8XF2ZwQJSGlFKUaBVN3gVoFkdAtEvINlRP43V9lChoBmgJaA9DCPLs8q0PE29AlIaUUpRoFU1ABmgWR0C0TO+S8rZrdX2UKGgGaAloD0MIR+f8FEdFcECUhpRSlGgVTeMFaBZHQLROOmZmZmZ1fZQoaAZoCWgPQwi+3v3xHjZwQJSGlFKUaBVNHwZoFkdAtE+ZFpfx+nV9lChoBmgJaA9DCPorZK6MUHBAlIaUUpRoFU3WBWgWR0C0UD7c45tFdX2UKGgGaAloD0MIeJlho6yPcECUhpRSlGgVTYoFaBZHQLRQ9/x2B8R1fZQoaAZoCWgPQwh79Ib7iHBwQJSGlFKUaBVNzAVoFkdAtFHNgTh5xHV9lChoBmgJaA9DCBHEeTgBRHBAlIaUUpRoFU3NBWgWR0C0WXzHGS6ldX2UKGgGaAloD0MIE2VvKefOUECUhpRSlGgVTb4DaBZHQLRaOaSs8xN1fZQoaAZoCWgPQwhHj9/btDhwQJSGlFKUaBVNCAZoFkdAtFram3vx6XV9lChoBmgJaA9DCOsB85Cpa3BAlIaUUpRoFU3MBWgWR0C0W3jDfm9ydX2UKGgGaAloD0MIdCUC1f+jcECUhpRSlGgVTaMFaBZHQLRcvgYxcml1fZQoaAZoCWgPQwiqfqXzoWNwQJSGlFKUaBVNvgVoFkdAtF2uRuCPIXV9lChoBmgJaA9DCIz4Tsz6+G9AlIaUUpRoFU0SBmgWR0C0XyHZsbeedX2UKGgGaAloD0MI0nDK3PyOcECUhpRSlGgVTbIFaBZHQLRfempEQXh1fZQoaAZoCWgPQwjH9IQlnnlwQJSGlFKUaBVNrgVoFkdAtGASUgSvknV9lChoBmgJaA9DCHKG4o43lHBAlIaUUpRoFU2bBWgWR0C0Zx4a5wwTdX2UKGgGaAloD0MIpkV9kvuicECUhpRSlGgVTYEFaBZHQLRoPBSk0rN1fZQoaAZoCWgPQwii0/NuLM5cQJSGlFKUaBVNtwRoFkdAtGh7yrgfl3V9lChoBmgJaA9DCO0RaoZUaShAlIaUUpRoFU1nAmgWR0C0amyVW0Z4dX2UKGgGaAloD0MI6J/gYkXaY0CUhpRSlGgVTV4FaBZHQLRqgxR2r4p1fZQoaAZoCWgPQwhsIjMXeKBwQJSGlFKUaBVNsAVoFkdAtGsmSEDhcnV9lChoBmgJaA9DCK+ZfLONNHBAlIaUUpRoFU3pBWgWR0C0a/GcawUydX2UKGgGaAloD0MIGqN1VHWBcECUhpRSlGgVTbkFaBZHQLRsUyfcvdx1fZQoaAZoCWgPQwgQQGoT54pwQJSGlFKUaBVNnAVoFkdAtG2QeJYT03V9lChoBmgJaA9DCGfxYmGIZ15AlIaUUpRoFU3dBGgWR0C0dl10xM37dX2UKGgGaAloD0MIb/HwnkPicECUhpRSlGgVTVcFaBZHQLR2vMRYigV1fZQoaAZoCWgPQwgbRkHw+EBKwJSGlFKUaBVNSwFoFkdAtHeRZpztC3V9lChoBmgJaA9DCDTyecUTLHBAlIaUUpRoFU3xBWgWR0C0eAW5tm+TdX2UKGgGaAloD0MIzhq8rwrYcECUhpRSlGgVTWUFaBZHQLR4vCI1tO51fZQoaAZoCWgPQwg9npYfeF9wQJSGlFKUaBVN2gVoFkdAtHjHokiUxHV9lChoBmgJaA9DCIrNx7UhAnBAlIaUUpRoFU0RBmgWR0C0etD2rXDndX2UKGgGaAloD0MImQ0yyQhXcECUhpRSlGgVTcoFaBZHQLR8TeOn2qV1fZQoaAZoCWgPQwizeRwGc5VwQJSGlFKUaBVNlQVoFkdAtINl7TlT33V9lChoBmgJaA9DCAM/qmG/DlPAlIaUUpRoFUu/aBZHQLSDcfaHsTp1fZQoaAZoCWgPQwgTYi6pWodwQJSGlFKUaBVNqgVoFkdAtIPyO7xusXV9lChoBmgJaA9DCAdi2cyhkXBAlIaUUpRoFU2tBWgWR0C0hKwc5sCUdX2UKGgGaAloD0MIn5PeNz4ocECUhpRSlGgVTREGaBZHQLSFEauOjqR1fZQoaAZoCWgPQwisOUAwR65YwJSGlFKUaBVLZmgWR0C0hack2P1ddX2UKGgGaAloD0MI5l31gPm2bkCUhpRSlGgVTUAGaBZHQLSHUBciW3V1fZQoaAZoCWgPQwj4Nv3Zz1JwQJSGlFKUaBVNzwVoFkdAtIkD7bcoIHV9lChoBmgJaA9DCKH3xhBAC3BAlIaUUpRoFU06BmgWR0C0iV0bo8p1dX2UKGgGaAloD0MIZohjXdxucECUhpRSlGgVTdQFaBZHQLSJhcFyJbd1fZQoaAZoCWgPQwiutmJ/2QZwQJSGlFKUaBVNFgZoFkdAtIpxFDv3J3V9lChoBmgJaA9DCJQRF4DGinBAlIaUUpRoFU2TBWgWR0C0isEbLlmwdX2UKGgGaAloD0MIBabTug02OMCUhpRSlGgVTfgBaBZHQLSTKGc4HX51fZQoaAZoCWgPQwiTAgtgyjlwQJSGlFKUaBVN+QVoFkdAtJOj0J4SpXV9lChoBmgJaA9DCBLcSNkie1FAlIaUUpRoFU26A2gWR0C0k6+tCAtndX2UKGgGaAloD0MIBwjm6PF9cECUhpRSlGgVTbcFaBZHQLSVQGipNsZ1fZQoaAZoCWgPQwj8/s2LE6NwQJSGlFKUaBVNhwVoFkdAtJWYsbvPT3V9lChoBmgJaA9DCNZuu9BcUzdAlIaUUpRoFU28AmgWR0C0lcjJEH+qdX2UKGgGaAloD0MIqaPjauTFcECUhpRSlGgVTXEFaBZHQLSWyOvdM0x1fZQoaAZoCWgPQwjZImk3+sRwQJSGlFKUaBVNfgVoFkdAtJjY1LrX2HV9lChoBmgJaA9DCBf03hiCsnBAlIaUUpRoFU2QBWgWR0C0mN/MB6rvdX2UKGgGaAloD0MIIsK/CNqrcECUhpRSlGgVTVcFaBZHQLShDIRAbAF1fZQoaAZoCWgPQwiITPkQ1H9wQJSGlFKUaBVNtQVoFkdAtKER78ejmHV9lChoBmgJaA9DCBHhXwRNWnBAlIaUUpRoFU25BWgWR0C0oZKN2ki2dX2UKGgGaAloD0MIAIxn0NAlbECUhpRSlGgVTUAGaBZHQLSjAHR1HON1fZQoaAZoCWgPQwiEDU+vFItwQJSGlFKUaBVNsQVoFkdAtKSP8MuvlnV9lChoBmgJaA9DCF/svfjiPXBAlIaUUpRoFU3MBWgWR0C0pLBaouPFdX2UKGgGaAloD0MIFeP8TSiPcECUhpRSlGgVTZkFaBZHQLSmI8Hv+fh1fZQoaAZoCWgPQwimme510ilwQJSGlFKUaBVN6QVoFkdAtKaSb+cYqHV9lChoBmgJaA9DCCU/4lfsSXBAlIaUUpRoFU3GBWgWR0C0pwKcNH6NdX2UKGgGaAloD0MIuFZ72MsRcECUhpRSlGgVTSQGaBZHQLSvNEkjX4F1fZQoaAZoCWgPQwi+hXXj3REawJSGlFKUaBVNIAJoFkdAtK9gj9n9N3V9lChoBmgJaA9DCJI9Qs0QCXBAlIaUUpRoFU3+BWgWR0C0sLFpoK2KdX2UKGgGaAloD0MIp804DVEzcECUhpRSlGgVTfoFaBZHQLSwzFV1fVt1fZQoaAZoCWgPQwg4LXjR11lwQJSGlFKUaBVN5wVoFkdAtLKnnxJ/X3V9lChoBmgJaA9DCGe0VUlkGHBAlIaUUpRoFU0xBmgWR0C0s1XscABDdX2UKGgGaAloD0MI9UiD21qBcECUhpRSlGgVTZsFaBZHQLS08rK/2011fZQoaAZoCWgPQwg0uoPY2U9wQJSGlFKUaBVN3wVoFkdAtLVXbN8mbHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1148, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 7, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/HCj1wo9cKhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.107+-x86_64-with-debian-bullseye-sid #1 SMP Sun Apr 24 15:04:08 UTC 2022", "Python": "3.7.12", "Stable-Baselines3": "1.5.0", "PyTorch": "1.9.1", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbc1a8f2680>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbc1a8f2710>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbc1a8f27a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbc1a8f2830>", "_build": "<function ActorCriticPolicy._build at 0x7fbc1a8f28c0>", "forward": "<function ActorCriticPolicy.forward at 0x7fbc1a8f2950>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbc1a8f29e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fbc1a8f2a70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbc1a8f2b00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbc1a8f2b90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbc1a8f2c20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fbc1a945390>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVPwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLGIWUjAFDlHSUUpSMBGhpZ2iUaBIolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSxiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsYhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [24], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVdwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_np_random": null}, "n_envs": 32, "num_timesteps": 3014656, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652454686.2842703, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQwAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYADAAAAAAAAJdoFT/XVn+9Wc/xPila5LsPJVO/oDRvvNDkZr4+L5I+AAAAAAIRYT+OrtS+3MBePgvSf78AAAAAE8qGPvJRiD5KF40+jHuUPtVHoD6edbE+xqXKPvGi9j487CQ/AACAP11WsD6LgwA8CN8LPwgyebwlmTC/SHaZv6DmtDxz9Xk/AACAP41ojD8Xmag+MJUaP/3/f78AAAAAGHuXPl36lz6Hhpw+70SmPql8tT5OtMw+FtTvPoHgFD9OL1E/AACAP5XVMz8IKHO9X03wPvbr9Dv7AE2/AAAAM1ABQ74t/zc+AACAP9Lohj8AAIA/roArP7Vr8L4AAAAAaNSdPmdwnj6ETKI+SCOqPhiGtj6/Fck+YsnkPhizCT++kD8/AACAP3vbUz6ODGg9vPazPpnqhT0iXwG/BQCAP4DTVL4BAIC/AAAAAPuQjz+vbw2+wPt6vQEAgL8AAIA/Ja+ePpLhnj7n4qI+VierPvzhuj6VM9M+yO37PvRSID+fB14/AACAPzmmFz/86AO+kmXwPgF6aj0SvVW/AABqudBRmr62GQw/AACAPz7CnD9ZwN4/3JQePw3/f78AAAAANcuNPlLVkD6ljpc+QPiiPn7Wsj64tsk++lDsPkpUET8gg0M/AACAP/J3rT5lh3E9j3abPT4pDrySxzS+FOa2vngzAr8gz4+6AACAPzZWjD9KM4y+UCTnvQAAgL8AAAAAbXWiPr1NpD7NDao+iGu0Pu3WxD5RCN4+/qwCP3RAIz9pqWE/AACAP5IWpz6h5IC7auu4PlEWkL0nGAO///9/P84RGb/9/3+/AAAAAIo8iz+IEao+Ul+sPv3/f78AAAAArB6UPiZqmj5cA6Q+yeexPqx7wj5xqt4+0GkIP+V/NT8AAIA/AACAPwObSz7UAFc9/cuVPmwAjbxtdB++9/9/P9xXBr/9/3+/AAAAACXZgz/N81o/YMjlvoO39r8AAAAASQGzPrMJtT6xX7s+tcvGPjfj2D55pfQ+KfwPP1AyND+fpXg/AACAP0uIsT7KDRQ9YBfnPpeTy73skmq8WvIMvyy2Ir8AAAi2AACAP5Jljj9rW2Y/gKQTvgAAgL8AAAAABuepPlikrT4gabU+8dzBPgLN0T6wpes+ycYHPxLtIz/XNVg/AACAP9dwxD7jELs7pzXxPkBbNr0JvJa+MA5ev+rVCr9tW7w+AACAP2veRz+btPa+ErWePvT/fz8AAIA/NbKXPupomz7P76I+1JWuPkl5vj4Oa9w+CO4DP5UuJj8AAIA/AACAP8e11j42hQW+/YDqPvivZz3FvFW/AEBeuAC56TsDgEs/AAAAAGAGhT+I/n+/nGqVPusAgD8AAAAAaZKLPr8djT4QDpI+r2WZPpNXpT5xUbk+Dz3XPqBZCT86x0o/AACAP/l+fD7qLiq+MSYLPyEgbLvl71S/APR+uyizdT4V7X4/AAAAABOwjD9xTMI/wOJnvcf6f78AAIA/6XSOPt/fkD51DJg+nm+kPmaVsz5c0s0+Aib7PrE/Jz8AAIA/AACAP3EFPT+Ttbq9Zne4PjqOgTtlu1W/ANgdOiCcWb7JHLc+AACAP2bTjz8AAMi36P4EP98IgL8AAAAA8HOaPnXOmz5kQqE+alCrPvXxuj47aNI+j0D4Po+8Gj+BU1E/AACAP3AUEz91LgC9l+fGPszNw73+Pa++AgCAP4y/PL9FSQm/AACAP0dRXD+t1Ew/IF4XvqHC1D4AAIA/hu2SPh6lkz6Gy5c+kOGfPoR8rT6NrcM+/WHlPtQcET/nm1c/AACAP2kQBT8uw6K9pkETP9Qoob3BvFW/AAAAANC8c76Bz6o+AACAP+rCnD+Ee8w/AFGgPQEAgL8AAAAA2WaKPnfdjD5+/ZI+KhaePmK5rz4t7sk+xYbtPvThET8jbkQ/AACAP146pj5S+jU91OKFPl81mrw9tUE9+/9/v/DQDr/w6IM+AACAP7pEkT8AAAAAUInoPZXLcD8AAAAA7MmtPmZirT4qxLE+Om67Pr5xzD7u7eU+yDsIP29qLT/Z73Q/AACAP2VuAT8q/v+9vLryPqWfzbxhulW/AADoNQCkbb0HxRA/AAAAANJJgj+KNAQ/spikPgEAgL8AAAAAIG2SPkFjkz7F8pc+9jWhPliXrj6/b8E+/IrfPj1tBT+cky4/AACAPyW2ij5U0TY9XearPjfY4D3dBlK/8HJTPsD6CD4A/3+/AAAAAFUskT8AAOA0gNpOPa/Jf78AAIA/z4OIPtuviT7qh44+hvaYPmIUqD6Iob0+trTgPnMnFj9C1m4/AACAP1g6sj4lIQa8SqOxPv4cGDsrW7G+a+4ZP/CbJb8AAIC/AAAAAMePej8OqF4/zOXNvv3/fz8AAAAAeI6pPvl1qj4zbbA+cHG6PhXCyT7a4uA++QwEP5F+KT+DvXk/AACAP1ax9b1075w59F0ePkFMeb1JCzs9Xa8/v1h46r5o5x8+AAAAAIRJjj9dl4i+2CMevwAAAAAAAAAARTC5PuRMuT5Gpbs+h77CPsL+zz45cOo+w+8FP7S5ID9V8l8/AACAP1jNiT5+niG+cBkHP3Ef1zqKvFW/AKgNOmShOz6rH3A/AACAP4I+kD8AAMG30OJfPqMIgL8AAAAA3OeWPjDslz4mDp0+CKGmPn7LtD50Bck+cKvoPhTuDz+qJlI/AACAP8Y0uT4dQ0W8ctyyPh935L0ddRs98zcBP5wXK793sh+/AACAP+clfz8BAIA/KIdYvgEAgD8AAAAAw2SrPg1XrT5N3bM+ErG+PmnUzT5fIOM+J8wCPyJAHz9duk8/AACAPwXo4T6uQS49rdu5PnrTzjwrMNq+5f9/v/5+Ar96MAs/AAAAAI2Mcj/3FKW+yEA3vvz/fz8AAAAA0pySPvQvlT5qhps+BlmlPtJFtD6d5sk+HZ/vPu6AFz+BvlM/AACAPyqQuD5fg1E9AZGXPqI0AT5xVze/+/9/P+DM7b0BAIC/AAAAACiNiT8jnMa+wAz4PJnvzr4AAIA/i6aVPtwTlj4GFZk+XfqePlqFqD6j1Lk+JCLYPs9iAz8AaTc/AACAP1YvFz9Uct89K9lcPtEL2TyqCxm/3NLuvpCy8L5IJWE/AAAAAFO3Fj825JS/UNzIPQAAgD8AAAAARZuzPm+ltT7gALw+t3bHPsmd2T7sd/U+BXgQPyjuMT+NU3g/AACAPwYUEz9pfRc9B9LAPjRfYz1FbAm/ucR/v/Ql3L7Dkhw/AAAAAFWPOT/pkx6/yLatPkD/fz8AAAAATlObPuEWnT5OlqI+iWOsPpKyuj6RN9I+Cdb6PlDfGj9ByE4/AACAPxVzOz4UJba8cWr+Pvwlr72EWL++AgCAP0TyAL8BAIC/AAAAAA+2hT+9APk+JOjEvnvJY78AAIA/TXKjPv/vpz7Pua4+98q5Poonyj4a8N8+FBb+PvWNGj85N1Y/AACAPyTm2j6BGhY9YRvAPs4V67tJULG+dDt8PzIrMr8AAIC/AAAAAKHBdT8+cx0/QA8GvwEAgL8AAIA/NKmXPjbTmT64xJ8+vDarPoAHvD5Nf9M+d271PqPyGD9EjFI/AACAPwzGAT/Ipke9TR29Pu73ODz0Nz+//nxYP3BHTj0AAIC/AAAAAMoWkD8AAAAAKG+ePfv/f78AAAAA0KOePqZhoD7EiqU+UiysPiBltz7ovMg+j7nlPg21DD9960Q/AACAP+DAoT4EMSk9xl6dPn3KDD69DS6/AgCAP8BX9LwBAIC/AAAAAAHPhj+aH3y+wJcovgAAgL8AAIA/XpKfPklioT6xR6U+Je+sPoUCuT4e2Ms+8X7qPgezED/ek0Q/AACAP2wfBj9Uco29xpkAP6rX8DwB7k2/AACAM8C8Vb2Qb8c+AACAP5k7fj8a5qq+yOS5PgAAgD8AAAAAPY+dPn+TnT7sR6A+55yoPrO4tz4VxM0+VdrxPpnpGT+qZFk/AACAP1zMED/jIkI92b7UPsfSiTz2QxG/dXaRv/SDq74qQRw/AACAPysTfj/YoV6//CduPp10UD8AAAAAlFihPqgtoz6i46g+MS+zPsx9wz4Eg9w+38cBP+EpJT/jxmU/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLIEsYhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILH5TWOkRcUCUhpRSlIwBbJRNKgWMAXSUR0C1dDtCNS62dX2UKGgGaAloD0MI2A3bFuWJcUCUhpRSlGgVTbwEaBZHQLV0/GC7K7t1fZQoaAZoCWgPQwjbGDvhJR9xQJSGlFKUaBVNBwVoFkdAtXU33VTaTXV9lChoBmgJaA9DCEwceSByFHFAlIaUUpRoFU0cBWgWR0C1dU9cW0qpdX2UKGgGaAloD0MIGa2jqkkrcUCUhpRSlGgVTfcEaBZHQLV2mz19ORF1fZQoaAZoCWgPQwgzbmqgOS9xQJSGlFKUaBVNKgVoFkdAtXg5pDeCTXV9lChoBmgJaA9DCCjxuRMsa3FAlIaUUpRoFU26BGgWR0C1eGCAhB7edX2UKGgGaAloD0MIs0KR7idDcUCUhpRSlGgVTfwEaBZHQLV4txdpqRF1fZQoaAZoCWgPQwgoucMmMklxQJSGlFKUaBVN1ARoFkdAtXjoHpr1unV9lChoBmgJaA9DCLVU3o5wRnFAlIaUUpRoFU34BGgWR0C1ei58fFJhdX2UKGgGaAloD0MImdTQBmBLVsCUhpRSlGgVS3RoFkdAtXqQ43m3fHV9lChoBmgJaA9DCHcstklFUnFAlIaUUpRoFU3aBGgWR0C1eww6Mir1dX2UKGgGaAloD0MIjuczoN5CcUCUhpRSlGgVTQYFaBZHQLV8kbJwKjV1fZQoaAZoCWgPQwhPzlDc8V5xQJSGlFKUaBVNxwRoFkdAtX1vWtlqanV9lChoBmgJaA9DCDscXaW7I3FAlIaUUpRoFU3fBGgWR0C1fYKfapPzdX2UKGgGaAloD0MIzc03orsrcUCUhpRSlGgVTRoFaBZHQLV9wz1bqyJ1fZQoaAZoCWgPQwiLUkKwqhZxQJSGlFKUaBVNHAVoFkdAtX3LdcjZ+XV9lChoBmgJaA9DCMx/SL+9F3FAlIaUUpRoFU0KBWgWR0C1fg4z3yqddX2UKGgGaAloD0MIKZZbWo3QcECUhpRSlGgVTVMFaBZHQLV+uZiuuA91fZQoaAZoCWgPQwiy17s/XkNxQJSGlFKUaBVN9wRoFkdAtX8PyZrpJXV9lChoBmgJaA9DCPfHe9WKMHFAlIaUUpRoFU30BGgWR0C1f0/MGHHndX2UKGgGaAloD0MIRZvj3CZFcUCUhpRSlGgVTd0EaBZHQLV/dqu8sc11fZQoaAZoCWgPQwhKuJBH8FBxQJSGlFKUaBVN8wRoFkdAtX99ChN/OXV9lChoBmgJaA9DCA3DR8QUg3FAlIaUUpRoFU21BGgWR0C1f/+7UXpGdX2UKGgGaAloD0MIFQDjGfR5cUCUhpRSlGgVTb8EaBZHQLWAYBrN4aB1fZQoaAZoCWgPQwiH4SNiyiRxQJSGlFKUaBVNBAVoFkdAtYB6ZkTYd3V9lChoBmgJaA9DCNnuHqA7M3FAlIaUUpRoFU31BGgWR0C1gRvBi1ArdX2UKGgGaAloD0MIpmH4iNhXcUCUhpRSlGgVTdEEaBZHQLWCBlxwQ191fZQoaAZoCWgPQwhPrb66alpxQJSGlFKUaBVN5wRoFkdAtYTJzltCRnV9lChoBmgJaA9DCJGBPLs8lXFAlIaUUpRoFU2sBGgWR0C1hdOiaiK0dX2UKGgGaAloD0MISwD+KZUwcUCUhpRSlGgVTQYFaBZHQLWF9gccU/R1fZQoaAZoCWgPQwj9a3nletMkwJSGlFKUaBVN5AFoFkdAtYZvUtqYZ3V9lChoBmgJaA9DCG4T7pU5W3FAlIaUUpRoFU3SBGgWR0C1hnJHy3CsdX2UKGgGaAloD0MIVOV7RqL3cECUhpRSlGgVTTMFaBZHQLWGl7/XGwR1fZQoaAZoCWgPQwgm5e5z/E5xQJSGlFKUaBVN3wRoFkdAtYbqEQGwA3V9lChoBmgJaA9DCMhAnl0+dXFAlIaUUpRoFU24BGgWR0C1h3fCyhSMdX2UKGgGaAloD0MI1BBV+LNbcUCUhpRSlGgVTeIEaBZHQLWIJaLGaQV1fZQoaAZoCWgPQwgqVDcXf2tgQJSGlFKUaBVNRgRoFkdAtYjT4O+ZgHV9lChoBmgJaA9DCCx+U1hp2nBAlIaUUpRoFU1CBWgWR0C1iTmMCLdfdX2UKGgGaAloD0MIbD8Z48NDcUCUhpRSlGgVTesEaBZHQLWJl6FM7EJ1fZQoaAZoCWgPQwhJRzmYjXtxQJSGlFKUaBVNwARoFkdAtYsOUD+zdHV9lChoBmgJaA9DCJjbvdznPHFAlIaUUpRoFU0UBWgWR0C1i+milBQfdX2UKGgGaAloD0MI7PZZZSZHcUCUhpRSlGgVTd4EaBZHQLWM81WKdhB1fZQoaAZoCWgPQwj2X+emjXNxQJSGlFKUaBVNrgRoFkdAtY0iWLP2PHV9lChoBmgJaA9DCBBAahPnAHFAlIaUUpRoFU0WBWgWR0C1jh7Y5DJEdX2UKGgGaAloD0MIu7ciMYF8cUCUhpRSlGgVTagEaBZHQLW/tjUd7v51fZQoaAZoCWgPQwjeq1Ym/JlxQJSGlFKUaBVNoQRoFkdAtcCJNxlxwXV9lChoBmgJaA9DCH9OQX42ZXFAlIaUUpRoFU3SBGgWR0C1wcaJQ+EAdX2UKGgGaAloD0MI2C0CY30McUCUhpRSlGgVTeoEaBZHQLXB3RsuWbB1fZQoaAZoCWgPQwgBvtu88e5wQJSGlFKUaBVN9gRoFkdAtcIGzdDYy3V9lChoBmgJaA9DCJZ2ai73rHFAlIaUUpRoFU2dBGgWR0C1wlT9n9NvdX2UKGgGaAloD0MIfbH34otGcUCUhpRSlGgVTfUEaBZHQLXDASX+l0p1fZQoaAZoCWgPQwh1VgvssUBxQJSGlFKUaBVN0wRoFkdAtcNQOlO45XV9lChoBmgJaA9DCMWrrG3KwHBAlIaUUpRoFU1qBWgWR0C1w3isbNr1dX2UKGgGaAloD0MI++qqQK04cUCUhpRSlGgVTfwEaBZHQLXD4xrSE151fZQoaAZoCWgPQwgDCB9KdBZxQJSGlFKUaBVN9gRoFkdAtcRT8IiTuHV9lChoBmgJaA9DCJ4I4jwcX3FAlIaUUpRoFU3eBGgWR0C1xF4BBAv+dX2UKGgGaAloD0MIRIXq5iJVcUCUhpRSlGgVTeIEaBZHQLXFjVENOM51fZQoaAZoCWgPQwhXXvI/efdwQJSGlFKUaBVNJAVoFkdAtcXsznA6+3V9lChoBmgJaA9DCPSmIhXGVnFAlIaUUpRoFU3FBGgWR0C1xh5pi7TVdX2UKGgGaAloD0MIaNDQP0F1cUCUhpRSlGgVTcYEaBZHQLXIg2A5Jbt1fZQoaAZoCWgPQwhiMepaO35xQJSGlFKUaBVNswRoFkdAtcmCjSG8EnV9lChoBmgJaA9DCPEsQUbAXnFAlIaUUpRoFU3aBGgWR0C1yqifUWl/dX2UKGgGaAloD0MIucX83NBRcUCUhpRSlGgVTe4EaBZHQLXLGDwYtQN1fZQoaAZoCWgPQwjsMZHSbCZxQJSGlFKUaBVN5gRoFkdAtcs0qNIbwXV9lChoBmgJaA9DCDupL0t7LnFAlIaUUpRoFU0QBWgWR0C1y3T/2kBTdX2UKGgGaAloD0MINdJSebuVcUCUhpRSlGgVTbAEaBZHQLXLj/mDDj11fZQoaAZoCWgPQwjOVfMckdRwQJSGlFKUaBVNQgVoFkdAtcu0E6kqMHV9lChoBmgJaA9DCGL4iJgSKHFAlIaUUpRoFU39BGgWR0C1y/nXyy2QdX2UKGgGaAloD0MIibFMv8RfcUCUhpRSlGgVTcIEaBZHQLXM3JKaodd1fZQoaAZoCWgPQwjpJ5zdGjpxQJSGlFKUaBVN7wRoFkdAtc0kYQ8OkXV9lChoBmgJaA9DCF73ViQmqXFAlIaUUpRoFU2dBGgWR0C1zxNpZfUndX2UKGgGaAloD0MIQ+OJII7QcECUhpRSlGgVTU4FaBZHQLXPSoegctJ1fZQoaAZoCWgPQwhxGw3g7XBxQJSGlFKUaBVNuwRoFkdAtdCRMmF8HHV9lChoBmgJaA9DCNGvrZ8+bnFAlIaUUpRoFU3BBGgWR0C10NivC/GmdX2UKGgGaAloD0MIe6GA7SDccECUhpRSlGgVTVcFaBZHQLXQ61D0Dlp1fZQoaAZoCWgPQwg983LY/ZVxQJSGlFKUaBVNswRoFkdAtdGlVWCEpXV9lChoBmgJaA9DCCtsBrggw1xAlIaUUpRoFU3SA2gWR0C10h8R15jZdX2UKGgGaAloD0MIuI/cmrRtcUCUhpRSlGgVTbsEaBZHQLXSzH4Glhx1fZQoaAZoCWgPQwhbXrnedhpxQJSGlFKUaBVNCgVoFkdAtdMgXsPatnV9lChoBmgJaA9DCFyRmKBGcnFAlIaUUpRoFU2rBGgWR0C11BkGRmsedX2UKGgGaAloD0MId9mvO12GcUCUhpRSlGgVTbAEaBZHQLXUYY77sOZ1fZQoaAZoCWgPQwgWTtL8cWRxQJSGlFKUaBVN0ARoFkdAtdSeVt4zJ3V9lChoBmgJaA9DCDJaR1XTd3FAlIaUUpRoFU2/BGgWR0C11N29tdiVdX2UKGgGaAloD0MIzCcrhqtucUCUhpRSlGgVTbcEaBZHQLXVapvP1L91fZQoaAZoCWgPQwg91SE3w3dxQJSGlFKUaBVN1wRoFkdAtda9ha1Ti3V9lChoBmgJaA9DCO52vTSFbHFAlIaUUpRoFU3LBGgWR0C11wP1tfoidX2UKGgGaAloD0MI6Ih8l1JmcUCUhpRSlGgVTdsEaBZHQLXXSLw4KhN1fZQoaAZoCWgPQwjYSX1Z2gZxQJSGlFKUaBVNJwVoFkdAtdd4tapxWHV9lChoBmgJaA9DCK65o/9lfHFAlIaUUpRoFU20BGgWR0C119bNB4UvdX2UKGgGaAloD0MIOWItPgVNcUCUhpRSlGgVTeMEaBZHQLXYLi2lVLl1fZQoaAZoCWgPQwhb6bXZ2HtxQJSGlFKUaBVNyQRoFkdAtdhS2y9mH3V9lChoBmgJaA9DCDnVWpgFdmFAlIaUUpRoFU02BGgWR0C12VhkI5YHdX2UKGgGaAloD0MIcov5uaFFcUCUhpRSlGgVTe8EaBZHQLXbMKZ2IO91fZQoaAZoCWgPQwg2PL1SFqRxQJSGlFKUaBVNpQRoFkdAtdyVZA6dUnV9lChoBmgJaA9DCFiNJayNdXFAlIaUUpRoFU3IBGgWR0C13P6EFnqWdX2UKGgGaAloD0MIoBnEB/Y+cUCUhpRSlGgVTegEaBZHQLXdB5NGmUJ1fZQoaAZoCWgPQwghkiHHlopxQJSGlFKUaBVNvQRoFkdAtd1KDyvs7nV9lChoBmgJaA9DCMhdhClKj3FAlIaUUpRoFU23BGgWR0C13VodZJTVdX2UKGgGaAloD0MIs+veioSFcUCUhpRSlGgVTa8EaBZHQLXdhLFn7Hh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/HCj1wo9cKhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.107+-x86_64-with-debian-bullseye-sid #1 SMP Sun Apr 24 15:04:08 UTC 2022", "Python": "3.7.12", "Stable-Baselines3": "1.5.0", "PyTorch": "1.9.1", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:48607e6a972170fcba194a61a463ba46f6227ff56d7bda41b872d5b840252b19
3
- size 451290
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ac8081b816c75ccaf34e4a462787e0880301f569ebaffdbffcdcca3b02bb23f
3
+ size 446817
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 228.94556885107286, "std_reward": 101.34163571532663, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-13T14:30:38.922380"}
 
1
+ {"mean_reward": 303.0542127261935, "std_reward": 1.7895078631339627, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-13T16:38:48.546004"}