# coding=utf-8 # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ LLaMA model configuration""" from transformers.configuration_utils import PretrainedConfig from transformers.utils import logging from transformers import LlamaConfig logger = logging.get_logger(__name__) LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {} class CLEXLlamaConfig(LlamaConfig): model_type = "llama" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, rope_scaling=None, use_flashattn=True, log_scale=True, pretraining_tp=1, **kwargs, ): super().__init__( **kwargs, ) self.pretraining_tp = pretraining_tp self.use_flashattn = use_flashattn self.log_scale = log_scale # self.rope_theta = 10000 # self.max_position_embeddings = 4096 # self.data_length = 4096 self.rope_scaling = rope_scaling self._rope_scaling_validation() def _rope_scaling_validation(self): """ Validate the `rope_scaling` configuration. """ if self.rope_scaling is None: return # if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2: # raise ValueError( # "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " # f"got {self.rope_scaling}" # ) rope_scaling_type = self.rope_scaling.get("type", None) rope_scaling_max_factor = self.rope_scaling.get("max_factor", None) rope_scaling_param_factor = self.rope_scaling.get("param_factor", None) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic", "clex"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) # if rope_scaling_max_factor is None or not isinstance(rope_scaling_max_factor, float) or rope_scaling_max_factor <= 1.0: # raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_max_factor}") # if rope_scaling_param_factor is None or not isinstance(rope_scaling_param_factor, float) or rope_scaling_param_factor <= 1.0: # raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_param_factor}")