--- license: mit language: - en --- # CLEX: Continuous Length Extrapolation for Large Language Models This repo stores the checkpoint of CLEX-LLaMA-2-7B-64K. ## Features and Highlights of CLEX ![CLEX_diagram](https://github.com/DAMO-NLP-SG/CLEX/assets/18526640/063ffe34-0116-4759-92bf-e22fc7264cdf) - **Simple and Clear**: _MINIMAL_ code and architecture changes. Only one up-and-down projection layer introduced, _NO_ recurrent memory caching or sparse attention required. - **Train Short, Test Long**: _NO_ performance drop on the sequences _4x~8x longer_ than the training ones (see [here](https://github.com/DAMO-NLP-SG/CLEX#language-modelling)). - **Continuous Length Extrapolation**: Explicitly modeling the continuous dynamics of context window size during length extrapolation. If you have any questions, feel free to contact us. (Emails: guanzzh.chen@gmail.com, lixin4ever@gmail.com) ## Model Zoo
| Model Name | Model Type | Starting Point | Train Data |Train Length | MAX Test Length | HF Repo | |:-----|:-----|:-----------|:-----------|:-----------|:-----------|:------:| | CLEX-LLaMA-2-7B-16K | base | LLaMA-2-7B | [Redpajama-Book](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T) | 16K | 64K | [link](https://huggingface.co/DAMO-NLP-SG/CLEX-7B-16K) | | CLEX-LLaMA-2-7B-Chat-16K | chat | CLEX-7B-16K | [UltraChat](https://github.com/thunlp/UltraChat) | 16K | 64K | [link](https://huggingface.co/DAMO-NLP-SG/CLEX-7B-Chat-16K) | | **CLEX-LLaMA-2-7B-64K** (this checkpoint) | base | LLaMA-2-7B | [Redpajama-Book](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T) | 64k | 256K | [link](https://huggingface.co/DAMO-NLP-SG/CLEX-LLaMA-2-7B-64K) | | CLEX-Phi-2-32K | base | Phi-2-2.7B | [LongCorpus-2.5B](https://huggingface.co/datasets/DAMO-NLP-SG/LongCorpus-2.5B) | 32k | 128K | [link](https://huggingface.co/DAMO-NLP-SG/CLEX-Phi-2-32K) | | CLEX-Mixtral-8x7B-32K | base | Mixtral-8x7B-v0.1 | [LongCorpus-2.5B](https://huggingface.co/datasets/DAMO-NLP-SG/LongCorpus-2.5B) | 32k | >128K | [link](https://huggingface.co/DAMO-NLP-SG/CLEX-Mixtral-8x7B-32K) | | CLEX-Mixtral-8x7B-Chat-32k | chat | CLEX-Mixtral-8x7B-32K | [Ultrachat 200k](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k) | 32k | >128K | [link](https://huggingface.co/DAMO-NLP-SG/CLEX-Mixtral-8x7B-Chat-32K) |
## Usage ```bash import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("DAMO-NLP-SG/CLEX-LLaMA-2-7B-64K", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("DAMO-NLP-SG/CLEX-LLaMA-2-7B-64K", torch_dtype=torch.bfloat16, trust_remote_code=True) inputs = tokenizer("What is CLEX?", return_tensors="pt") sample = model.generate(**inputs, max_length=128) print(tokenizer.decode(sample[0])) ``` ## Evaluation ### Language Modelling Here are the evaluation PPLs of the base models trained with CLEX. We apply training and evaluation on a subset of 2B tokens from the [RedPajama-Book](https://github.com/togethercomputer/RedPajama-Data) corpus, where the training and test sets are split by 99:1. | | Train Length | Eval.(32k) | Eval.(64k) | Eval.(128k) | Eval.(256k) | | --------------- | ------------ | ---------- | ---------- | ----------- | ----------- | | CLEX-LLaMA-2-7B | 64k | 5.99 | 5.89 | 6.04 | 5.98 | ## Citation If you find our project useful, hope you can star our repo and cite our paper as follows: ``` @article{damonlpsg2023clex, author = {Chen, Guanzheng and Li, Xin and Meng, Zaiqiao and Liang, Shangsong and Bing, Lidong}, title = {CLEX: Continuous Length Extrapolation for Large Language Models}, year = 2023, journal = {arXiv preprint arXiv:2310.16450}, url = {https://arxiv.org/abs/2310.16450} } ```