import os, json from cybersecurity_knowledge_graph.utils import get_content, get_event_args, get_event_nugget, get_idxs_from_text, get_args_entity_from_idx, find_dict_by_overlap from tqdm import tqdm import spacy import jsonlines from sklearn.model_selection import train_test_split import math from transformers import pipeline from sentence_transformers import SentenceTransformer import numpy as np embed_model = SentenceTransformer('all-MiniLM-L6-v2') pipe = pipeline("token-classification", model="CyberPeace-Institute/SecureBERT-NER") nlp = spacy.load('en_core_web_sm') """ Class: EventArgumentRoleDataset Description: This class represents a dataset for training and evaluating event argument role classifiers. Attributes: - path: The path to the folder containing JSON files with event data. - tokenizer: A tokenizer for encoding text data. - arg: The specific argument type (subtype) for which the dataset is created. - data: A list to store data samples, each consisting of an embedding and a label. - train_data, val_data, test_data: Lists to store the split training, validation, and test data samples. - datapoint_id: An identifier for tracking data samples. Methods: - __len__(): Returns the total number of data samples in the dataset. - __getitem__(index): Retrieves a data sample at a specified index. - to_jsonlines(train_path, val_path, test_path): Writes the dataset to JSON files for train, validation, and test sets. - train_val_test_split(): Splits the data into training and test sets. - load_data(): Loads and preprocesses event data from JSON files, creating embeddings for argument-role classification. """ class EventArgumentRoleDataset(): def __init__(self, path, tokenizer, arg): self.path = path self.tokenizer = tokenizer self.arg = arg self.data = [] self.train_data, self.val_data, self.test_data = None, None, None self.datapoint_id = 0 def __len__(self): return len(self.data) def __getitem__(self, index): sample = self.data[index] return sample def to_jsonlines(self, train_path, val_path, test_path): if self.train_data is None or self.test_data is None: raise ValueError("Do the train-val-test split") with jsonlines.open(train_path, "w") as f: f.write_all(self.train_data) # with jsonlines.open(val_path, "w") as f: # f.write_all(self.val_data) with jsonlines.open(test_path, "w") as f: f.write_all(self.test_data) def train_val_test_split(self): self.train_data, self.test_data = train_test_split(self.data, test_size=0.1, random_state=42, shuffle=True) # self.val_data, self.test_data = train_test_split(test_val, test_size=0.5, random_state=42, shuffle=True) def load_data(self): folder_path = self.path json_files = [file for file in os.listdir(folder_path) if file.endswith('.json')] # Load the nuggets for idx, file_path in enumerate(tqdm(json_files)): try: with open(self.path + file_path, "r") as f: file_json = json.load(f) except: print("Error in ", file_path) content = get_content(file_json) content = content.replace("\xa0", " ") event_args = get_event_args(file_json) doc = nlp(content) sentence_indexes = [] for sent in doc.sents: start_index = sent[0].idx end_index = sent[-1].idx + len(sent[-1].text) sentence_indexes.append((start_index, end_index)) for idx, (start, end) in enumerate(sentence_indexes): sentence = content[start:end] is_arg_sentence = [event_arg["startOffset"] >= start and event_arg["endOffset"] <= end for event_arg in event_args] args = [event_args[idx] for idx, boolean in enumerate(is_arg_sentence) if boolean] if args != []: sentence_doc = nlp(sentence) sentence_embed = embed_model.encode(sentence) for arg in args: if arg["type"] == self.arg: arg_embed = embed_model.encode(arg["text"]) embedding = np.concatenate((sentence_embed, arg_embed)) self.data.append({"embedding" : embedding, "label" : arg["role"]["type"]})