--- base_model: SynamicTechnologies/CYBERT tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: Cyber-ThreaD/CyBERT-CyNER results: [] --- # Cyber-ThreaD/CyBERT-CyNER This model is a fine-tuned version of [SynamicTechnologies/CYBERT](https://huggingface.co/SynamicTechnologies/CYBERT) on the [CyNER](https://github.com/aiforsec/CyNER) dataset. It achieves the following results on the evaluation set: - Loss: 0.2405 - Precision: 0.4671 - Recall: 0.2810 - F1: 0.3509 - Accuracy: 0.9568 It achieves the following results on the prediction set: - Loss: 0.2747 - Precision: 0.5442 - Recall: 0.3483 - F1: 0.4248 - Accuracy: 0.9471 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2304 | 1.42 | 500 | 0.2405 | 0.4671 | 0.2810 | 0.3509 | 0.9568 | | 0.1092 | 2.84 | 1000 | 0.2575 | 0.5426 | 0.2848 | 0.3735 | 0.9601 | | 0.0797 | 4.26 | 1500 | 0.2454 | 0.4701 | 0.3308 | 0.3883 | 0.9576 | | 0.0615 | 5.68 | 2000 | 0.2669 | 0.4902 | 0.3180 | 0.3857 | 0.9586 | | 0.0504 | 7.1 | 2500 | 0.2687 | 0.4885 | 0.3525 | 0.4095 | 0.9580 | | 0.0379 | 8.52 | 3000 | 0.2752 | 0.4656 | 0.3627 | 0.4078 | 0.9573 | | 0.0339 | 9.94 | 3500 | 0.2828 | 0.4991 | 0.3499 | 0.4114 | 0.9586 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1 ### Citing & Authors If you use the model kindly cite the following work ``` @inproceedings{deka2024attacker, title={AttackER: Towards Enhancing Cyber-Attack Attribution with a Named Entity Recognition Dataset}, author={Deka, Pritam and Rajapaksha, Sampath and Rani, Ruby and Almutairi, Amirah and Karafili, Erisa}, booktitle={International Conference on Web Information Systems Engineering}, pages={255--270}, year={2024}, organization={Springer} } ```