--- base_model: - arcee-ai/Virtuoso-Small - CultriX/Qwen2.5-14B-Wernicke - CultriX/SeQwence-14B-EvolMerge - Qwen/Qwen2.5-14B-Instruct - v000000/Qwen2.5-Lumen-14B - CultriX/SeQwence-14Bv1 library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [task arithmetic](https://arxiv.org/abs/2212.04089) merge method using [Qwen/Qwen2.5-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) as a base. ### Models Merged The following models were included in the merge: * [arcee-ai/Virtuoso-Small](https://huggingface.co/arcee-ai/Virtuoso-Small) * [CultriX/Qwen2.5-14B-Wernicke](https://huggingface.co/CultriX/Qwen2.5-14B-Wernicke) * [CultriX/SeQwence-14B-EvolMerge](https://huggingface.co/CultriX/SeQwence-14B-EvolMerge) * [v000000/Qwen2.5-Lumen-14B](https://huggingface.co/v000000/Qwen2.5-Lumen-14B) * [CultriX/SeQwence-14Bv1](https://huggingface.co/CultriX/SeQwence-14Bv1) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: CultriX/Qwen2.5-14B-Wernicke parameters: weight: 0.318 # Strong performance in GPQA, MMLU-PRO density: 0.6 # Retain 60% of significant parameters - model: arcee-ai/Virtuoso-Small parameters: weight: 0.273 # Exceptional IFEval and MATH Level 5 capabilities density: 0.6 # Retain 60% of significant parameters - model: CultriX/SeQwence-14B-EvolMerge parameters: weight: 0.182 # MUSR and balanced contributions to Truthful QA and MMLU density: 0.5 # Retain 50% of significant parameters - model: CultriX/SeQwence-14Bv1 parameters: weight: 0.136 # Provides diverse data and generalization density: 0.4 # Retain 40% of significant parameters - model: v000000/Qwen2.5-Lumen-14B parameters: weight: 0.091 # Enhances creative and narrative tasks density: 0.5 # Retain 50% for task diversity base_model: Qwen/Qwen2.5-14B-Instruct merge_method: task_arithmetic parameters: normalize: true # Ensures parameter scaling compatibility int8_mask: true # Optimizes memory and computational efficiency dtype: bfloat16 tokenizer_source: Qwen/Qwen2.5-14B-Instruct ```