--- base_model: - Qwen/Qwen2.5-14B - allknowingroger/QwenSlerp6-14B - allknowingroger/QwenStock3-14B - CultriX/SeQwence-14B-EvolMerge - CultriX/Qwen2.5-14B-Wernicke - VAGOsolutions/SauerkrautLM-v2-14b-DPO library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [Qwen/Qwen2.5-14B](https://huggingface.co/Qwen/Qwen2.5-14B) as a base. ### Models Merged The following models were included in the merge: * [allknowingroger/QwenSlerp6-14B](https://huggingface.co/allknowingroger/QwenSlerp6-14B) * [allknowingroger/QwenStock3-14B](https://huggingface.co/allknowingroger/QwenStock3-14B) * [CultriX/SeQwence-14B-EvolMerge](https://huggingface.co/CultriX/SeQwence-14B-EvolMerge) * [CultriX/Qwen2.5-14B-Wernicke](https://huggingface.co/CultriX/Qwen2.5-14B-Wernicke) * [VAGOsolutions/SauerkrautLM-v2-14b-DPO](https://huggingface.co/VAGOsolutions/SauerkrautLM-v2-14b-DPO) ### Configuration The following YAML configuration was used to produce this model: ```yaml ### CONFIG SuperiorMerge-14B-From-2-to-10 ### models: - model: VAGOsolutions/SauerkrautLM-v2-14b-DPO parameters: weight: 0.25 # Prioritize top IFEval density: 0.6 # Keep a large portion for strong factual baseline - model: allknowingroger/QwenSlerp6-14B parameters: weight: 0.25 # High weight for MATH and balanced reasoning density: 0.6 # Retain robust reasoning capabilities - model: CultriX/SeQwence-14B-EvolMerge parameters: weight: 0.20 # Important for best BBH and near-top MUSR density: 0.5 # Moderate density to ensure these strengths blend well - model: CultriX/Qwen2.5-14B-Wernicke parameters: weight: 0.15 # Adds top GPQA performance density: 0.5 # Sufficient to preserve QA strengths - model: allknowingroger/QwenStock3-14B parameters: weight: 0.15 # For top MMLU-PRO, enhancing domain knowledge density: 0.5 # Balanced integration of diverse subject expertise base_model: Qwen/Qwen2.5-14B merge_method: dare_ties parameters: normalize: true # Ensures parameter scaling compatibility int8_mask: true # Memory and computational efficiency dtype: bfloat16 tokenizer_source: Qwen/Qwen2.5-14B-Instruct ### END OF CONFIG SuperiorMerge-14B-From-2-to-10 ### ```