|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch Quiet model.""" |
|
import inspect |
|
import math |
|
import copy |
|
import os |
|
import time |
|
import pandas as pd |
|
import seaborn as sns |
|
import matplotlib.pyplot as plt |
|
import wandb |
|
from termcolor import colored |
|
from tqdm import tqdm |
|
import random |
|
import numpy as np |
|
from matplotlib.colors import LinearSegmentedColormap, LogNorm |
|
import warnings |
|
from collections import defaultdict |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.cache_utils import Cache, DynamicCache |
|
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa |
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import ( |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
is_flash_attn_2_available, |
|
is_flash_attn_greater_or_equal_2_10, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
from .configuration_quiet import QuietConfig |
|
|
|
|
|
if is_flash_attn_2_available(): |
|
from flash_attn import flash_attn_func, flash_attn_varlen_func |
|
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input |
|
|
|
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters) |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CONFIG_FOR_DOC = "QuietConfig" |
|
|
|
from reportlab.pdfgen import canvas |
|
from reportlab.lib.pagesizes import letter |
|
from reportlab.lib.colors import HexColor |
|
|
|
def save_tokens_with_rewards_to_pdf(input_ids, token_rewards, tokenizer, output_file="text.pdf", eps=0.2, eps2=0.5): |
|
c = canvas.Canvas(output_file, pagesize=letter) |
|
c.setFont("Courier", 8) |
|
x, y = 50, 750 |
|
previous_text = "" |
|
current_text = "" |
|
for token_idx, reward in enumerate(token_rewards): |
|
current_text = tokenizer.decode(input_ids[: token_idx + 1]) |
|
if current_text != previous_text: |
|
diff_text = current_text[len(previous_text) :] |
|
if "\n" in diff_text: |
|
lines = diff_text.split("\n") |
|
for line_idx, line in enumerate(lines): |
|
if line_idx > 0: |
|
x = 50 |
|
y -= 12 |
|
if abs(reward) < eps: |
|
opacity = 0 |
|
elif abs(reward) > eps2: |
|
opacity = 0.8 |
|
else: |
|
opacity = 0.8 * (abs(reward) - eps) / (eps2 - eps) |
|
text_width = c.stringWidth(line) |
|
if reward > 0: |
|
highlight_color = HexColor("#4CCD99") |
|
else: |
|
highlight_color = HexColor("#FFC700") |
|
highlight_color.alpha = opacity |
|
c.setFillColor(highlight_color) |
|
c.rect(x, y - 2, text_width, 10, fill=True, stroke=False) |
|
c.setFillColor(HexColor("#000000")) |
|
c.drawString(x, y, line) |
|
x += text_width |
|
else: |
|
if abs(reward) < eps: |
|
opacity = 0 |
|
elif abs(reward) > eps2: |
|
opacity = 0.8 |
|
else: |
|
opacity = 0.8 * (abs(reward) - eps) / (eps2 - eps) |
|
text_width = c.stringWidth(diff_text) |
|
if reward > 0: |
|
highlight_color = HexColor("#4CCD99") |
|
else: |
|
highlight_color = HexColor("#FFC700") |
|
highlight_color.alpha = opacity |
|
c.setFillColor(highlight_color) |
|
c.rect(x, y - 2, text_width, 10, fill=True, stroke=False) |
|
c.setFillColor(HexColor("#000000")) |
|
c.drawString(x, y, diff_text) |
|
x += text_width |
|
if x > 550: |
|
x = 50 |
|
y -= 12 |
|
if y < 50: |
|
c.showPage() |
|
y = 750 |
|
x = 50 |
|
previous_text = current_text |
|
c.showPage() |
|
c.save() |
|
|
|
|
|
|
|
def _get_unpad_data(attention_mask): |
|
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) |
|
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() |
|
max_seqlen_in_batch = seqlens_in_batch.max().item() |
|
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)) |
|
return ( |
|
indices, |
|
cu_seqlens, |
|
max_seqlen_in_batch, |
|
) |
|
|
|
|
|
|
|
class QuietRMSNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
""" |
|
QuietRMSNorm is equivalent to T5LayerNorm |
|
""" |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
return hidden_states.to(input_dtype) * self.weight.to(hidden_states.device) |
|
|
|
|
|
|
|
class QuietRotaryEmbedding(nn.Module): |
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): |
|
super().__init__() |
|
|
|
self.dim = dim |
|
self.max_position_embeddings = max_position_embeddings |
|
self.base = base |
|
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
|
|
self._set_cos_sin_cache( |
|
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() |
|
) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) |
|
|
|
freqs = torch.outer(t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) |
|
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) |
|
|
|
def forward(self, x, seq_len=None): |
|
|
|
if seq_len > self.max_seq_len_cached: |
|
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) |
|
|
|
return ( |
|
self.cos_cached[:seq_len].to(dtype=x.dtype), |
|
self.sin_cached[:seq_len].to(dtype=x.dtype), |
|
) |
|
|
|
|
|
|
|
def rotate_half(x): |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): |
|
"""Applies Rotary Position Embedding to the query and key tensors. |
|
Args: |
|
q (`torch.Tensor`): The query tensor. |
|
k (`torch.Tensor`): The key tensor. |
|
cos (`torch.Tensor`): The cosine part of the rotary embedding. |
|
sin (`torch.Tensor`): The sine part of the rotary embedding. |
|
position_ids (`torch.Tensor`): |
|
The position indices of the tokens corresponding to the query and key tensors. For example, this can be |
|
used to pass offsetted position ids when working with a KV-cache. |
|
unsqueeze_dim (`int`, *optional*, defaults to 1): |
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and |
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note |
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and |
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes |
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have |
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. |
|
Returns: |
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. |
|
""" |
|
cos = cos[position_ids].unsqueeze(unsqueeze_dim) |
|
sin = sin[position_ids].unsqueeze(unsqueeze_dim) |
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
return q_embed, k_embed |
|
|
|
|
|
class QuietMLP(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.intermediate_size = config.intermediate_size |
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
def forward(self, x): |
|
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
|
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
""" |
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
""" |
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
if n_rep == 1: |
|
return hidden_states |
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
class QuietAttention(nn.Module): |
|
""" |
|
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer |
|
and "Generating Long Sequences with Sparse Transformers". |
|
""" |
|
|
|
def __init__(self, config: QuietConfig, layer_idx: Optional[int] = None): |
|
super().__init__() |
|
self.config = config |
|
self.layer_idx = layer_idx |
|
if layer_idx is None: |
|
logger.warning_once( |
|
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " |
|
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " |
|
"when creating this class." |
|
) |
|
|
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.hidden_size // self.num_heads |
|
self.num_key_value_heads = config.num_key_value_heads |
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.rope_theta = config.rope_theta |
|
self.is_causal = True |
|
self.attention_dropout = config.attention_dropout |
|
self._attn_implementation = config._attn_implementation |
|
|
|
if (self.head_dim * self.num_heads) != self.hidden_size: |
|
raise ValueError( |
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" |
|
f" and `num_heads`: {self.num_heads})." |
|
) |
|
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) |
|
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) |
|
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) |
|
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) |
|
|
|
self.rotary_emb = QuietRotaryEmbedding( |
|
self.head_dim, |
|
max_position_embeddings=self.max_position_embeddings, |
|
base=self.rope_theta, |
|
) |
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): |
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
if "padding_mask" in kwargs: |
|
warnings.warn( |
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" |
|
) |
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
query_states = self.q_proj(hidden_states) |
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None: |
|
if self.layer_idx is None: |
|
raise ValueError( |
|
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " |
|
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " |
|
"with a layer index." |
|
) |
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) |
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) |
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) |
|
|
|
if past_key_value is not None: |
|
cache_kwargs = {"sin": sin, "cos": cos} |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) |
|
|
|
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" |
|
f" {attn_weights.size()}" |
|
) |
|
if self._attn_implementation == "flash_attention_2": |
|
|
|
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None |
|
elif self._attn_implementation == "sdpa": |
|
|
|
if attention_mask is None or attention_mask.dim() == 2: |
|
attention_mask = _prepare_4d_causal_attention_mask( |
|
attention_mask, |
|
(batch_size, seq_length), |
|
inputs_embeds, |
|
past_key_values_length, |
|
sliding_window=self.config.sliding_window, |
|
) |
|
else: |
|
|
|
if attention_mask is None or attention_mask.dim() == 2: |
|
attention_mask = _prepare_4d_causal_attention_mask( |
|
attention_mask, |
|
(batch_size, seq_length), |
|
inputs_embeds, |
|
past_key_values_length, |
|
sliding_window=self.config.sliding_window, |
|
) |
|
|
|
if attention_mask is not None: |
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" |
|
) |
|
|
|
attn_weights = attn_weights + attention_mask |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) |
|
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) |
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): |
|
raise ValueError( |
|
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" |
|
f" {attn_output.size()}" |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) |
|
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
class QuietFlashAttention2(QuietAttention): |
|
""" |
|
Quiet flash attention module. This module inherits from `QuietAttention` as the weights of the module stays |
|
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of |
|
flash attention and deal with padding tokens in case the input contains any of them. |
|
""" |
|
|
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
|
|
|
|
|
|
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
**kwargs, |
|
): |
|
if "padding_mask" in kwargs: |
|
warnings.warn( |
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" |
|
) |
|
|
|
|
|
attention_mask = kwargs.pop("padding_mask") |
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
query_states = self.q_proj(hidden_states) |
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None: |
|
if self.layer_idx is None: |
|
raise ValueError( |
|
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " |
|
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " |
|
"with a layer index." |
|
) |
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) |
|
|
|
|
|
rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1 |
|
cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len) |
|
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) |
|
|
|
use_sliding_windows = ( |
|
_flash_supports_window_size |
|
and getattr(self.config, "sliding_window", None) is not None |
|
and kv_seq_len > self.config.sliding_window |
|
) |
|
|
|
if not _flash_supports_window_size: |
|
logger.warning_once( |
|
"The current flash attention version does not support sliding window attention, for a more memory efficient implementation" |
|
" make sure to upgrade flash-attn library." |
|
) |
|
|
|
if past_key_value is not None: |
|
|
|
cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0 |
|
if ( |
|
getattr(self.config, "sliding_window", None) is not None |
|
and kv_seq_len > self.config.sliding_window |
|
and cache_has_contents |
|
): |
|
slicing_tokens = 1 - self.config.sliding_window |
|
|
|
past_key = past_key_value[self.layer_idx][0] |
|
past_value = past_key_value[self.layer_idx][1] |
|
|
|
past_key = past_key[:, :, slicing_tokens:, :].contiguous() |
|
past_value = past_value[:, :, slicing_tokens:, :].contiguous() |
|
|
|
if past_key.shape[-2] != self.config.sliding_window - 1: |
|
raise ValueError( |
|
f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got" |
|
f" {past_key.shape}" |
|
) |
|
|
|
if attention_mask is not None: |
|
attention_mask = attention_mask[:, slicing_tokens:] |
|
attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1) |
|
|
|
cache_kwargs = {"sin": sin, "cos": cos} |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
dropout_rate = 0.0 if not self.training else self.attention_dropout |
|
|
|
|
|
|
|
|
|
input_dtype = query_states.dtype |
|
if input_dtype == torch.float32: |
|
if torch.is_autocast_enabled(): |
|
target_dtype = torch.get_autocast_gpu_dtype() |
|
|
|
elif hasattr(self.config, "_pre_quantization_dtype"): |
|
target_dtype = self.config._pre_quantization_dtype |
|
else: |
|
target_dtype = self.q_proj.weight.dtype |
|
|
|
logger.warning_once( |
|
f"The input hidden states seems to be silently casted in float32, this might be related to" |
|
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" |
|
f" {target_dtype}." |
|
) |
|
|
|
query_states = query_states.to(target_dtype) |
|
key_states = key_states.to(target_dtype) |
|
value_states = value_states.to(target_dtype) |
|
|
|
|
|
query_states = query_states.transpose(1, 2) |
|
key_states = key_states.transpose(1, 2) |
|
value_states = value_states.transpose(1, 2) |
|
|
|
attn_output = self._flash_attention_forward( |
|
query_states, |
|
key_states, |
|
value_states, |
|
attention_mask, |
|
q_len, |
|
dropout=dropout_rate, |
|
use_sliding_windows=use_sliding_windows, |
|
) |
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() |
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
def _flash_attention_forward( |
|
self, |
|
query_states, |
|
key_states, |
|
value_states, |
|
attention_mask, |
|
query_length, |
|
dropout=0.0, |
|
softmax_scale=None, |
|
use_sliding_windows=False, |
|
): |
|
""" |
|
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token |
|
first unpad the input, then computes the attention scores and pad the final attention scores. |
|
Args: |
|
query_states (`torch.Tensor`): |
|
Input query states to be passed to Flash Attention API |
|
key_states (`torch.Tensor`): |
|
Input key states to be passed to Flash Attention API |
|
value_states (`torch.Tensor`): |
|
Input value states to be passed to Flash Attention API |
|
attention_mask (`torch.Tensor`): |
|
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the |
|
position of padding tokens and 1 for the position of non-padding tokens. |
|
dropout (`int`, *optional*): |
|
Attention dropout |
|
softmax_scale (`float`, *optional*): |
|
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) |
|
use_sliding_windows (`bool`, *optional*): |
|
Whether to activate sliding window attention. |
|
""" |
|
if not self._flash_attn_uses_top_left_mask: |
|
causal = self.is_causal |
|
else: |
|
|
|
causal = self.is_causal and query_length != 1 |
|
|
|
|
|
if attention_mask is not None: |
|
if attention_mask.dim() == 4: |
|
|
|
attention_mask = attention_mask.squeeze(1).squeeze(1) |
|
elif attention_mask.dim() != 2: |
|
raise ValueError( |
|
f"Invalid attention mask dimension: {attention_mask.dim()}. Expected 2D or 4D mask." |
|
) |
|
|
|
|
|
attention_mask = attention_mask.to(torch.bool).to(torch.int32) |
|
|
|
|
|
if attention_mask is not None: |
|
batch_size = query_states.shape[0] |
|
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( |
|
query_states, key_states, value_states, attention_mask, query_length |
|
) |
|
|
|
cu_seqlens_q, cu_seqlens_k = cu_seq_lens |
|
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens |
|
|
|
if not use_sliding_windows: |
|
attn_output_unpad = flash_attn_varlen_func( |
|
query_states, |
|
key_states, |
|
value_states, |
|
cu_seqlens_q=cu_seqlens_q, |
|
cu_seqlens_k=cu_seqlens_k, |
|
max_seqlen_q=max_seqlen_in_batch_q, |
|
max_seqlen_k=max_seqlen_in_batch_k, |
|
dropout_p=dropout, |
|
softmax_scale=softmax_scale, |
|
causal=causal, |
|
) |
|
else: |
|
attn_output_unpad = flash_attn_varlen_func( |
|
query_states, |
|
key_states, |
|
value_states, |
|
cu_seqlens_q=cu_seqlens_q, |
|
cu_seqlens_k=cu_seqlens_k, |
|
max_seqlen_q=max_seqlen_in_batch_q, |
|
max_seqlen_k=max_seqlen_in_batch_k, |
|
dropout_p=dropout, |
|
softmax_scale=softmax_scale, |
|
causal=causal, |
|
window_size=(self.config.sliding_window, self.config.sliding_window), |
|
) |
|
|
|
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) |
|
else: |
|
if not use_sliding_windows: |
|
attn_output = flash_attn_func( |
|
query_states, |
|
key_states, |
|
value_states, |
|
dropout, |
|
softmax_scale=softmax_scale, |
|
causal=causal, |
|
) |
|
else: |
|
attn_output = flash_attn_func( |
|
query_states, |
|
key_states, |
|
value_states, |
|
dropout, |
|
softmax_scale=softmax_scale, |
|
causal=causal, |
|
window_size=(self.config.sliding_window, self.config.sliding_window), |
|
) |
|
|
|
return attn_output |
|
|
|
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): |
|
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape |
|
|
|
|
|
|
|
if kv_seq_len != attention_mask.shape[-1]: |
|
attention_mask_num_tokens = attention_mask.shape[-1] |
|
attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :] |
|
|
|
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) |
|
|
|
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) |
|
value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) |
|
|
|
if query_length == kv_seq_len: |
|
query_layer = index_first_axis( |
|
query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k |
|
) |
|
cu_seqlens_q = cu_seqlens_k |
|
max_seqlen_in_batch_q = max_seqlen_in_batch_k |
|
indices_q = indices_k |
|
elif query_length == 1: |
|
max_seqlen_in_batch_q = 1 |
|
cu_seqlens_q = torch.arange( |
|
batch_size + 1, dtype=torch.int32, device=query_layer.device |
|
) |
|
indices_q = cu_seqlens_q[:-1] |
|
query_layer = query_layer.squeeze(1) |
|
else: |
|
|
|
attention_mask = attention_mask[:, -query_length:] |
|
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) |
|
|
|
return ( |
|
query_layer, |
|
key_layer, |
|
value_layer, |
|
indices_q, |
|
(cu_seqlens_q, cu_seqlens_k), |
|
(max_seqlen_in_batch_q, max_seqlen_in_batch_k), |
|
) |
|
|
|
|
|
|
|
class QuietSdpaAttention(QuietAttention): |
|
""" |
|
Quiet attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from |
|
`QuietAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to |
|
SDPA API. |
|
""" |
|
|
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
if output_attentions: |
|
|
|
logger.warning_once( |
|
"QuietModel is using QuietSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " |
|
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' |
|
) |
|
return super().forward( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
query_states = self.q_proj(hidden_states) |
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None: |
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) |
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) |
|
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) |
|
|
|
if past_key_value is not None: |
|
cache_kwargs = {"sin": sin, "cos": cos} |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
if attention_mask is not None: |
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" |
|
) |
|
|
|
|
|
|
|
if query_states.device.type == "cuda" and attention_mask is not None: |
|
query_states = query_states.contiguous() |
|
key_states = key_states.contiguous() |
|
value_states = value_states.contiguous() |
|
|
|
attn_output = torch.nn.functional.scaled_dot_product_attention( |
|
query_states, |
|
key_states, |
|
value_states, |
|
attn_mask=attention_mask.to(query_states.device) if attention_mask is not None else None, |
|
dropout_p=self.attention_dropout if self.training else 0.0, |
|
|
|
is_causal=self.is_causal and attention_mask is None and q_len > 1, |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) |
|
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
return attn_output, None, past_key_value |
|
|
|
|
|
QUIET_ATTENTION_CLASSES = { |
|
"eager": QuietAttention, |
|
"flash_attention_2": QuietFlashAttention2, |
|
"sdpa": QuietSdpaAttention, |
|
} |
|
|
|
|
|
class QuietDecoderLayer(nn.Module): |
|
def __init__(self, config: QuietConfig, layer_idx: int): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
|
|
self.self_attn = QUIET_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) |
|
|
|
self.mlp = QuietMLP(config) |
|
self.input_layernorm = QuietRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.post_attention_layernorm = QuietRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
**kwargs, |
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
if "padding_mask" in kwargs: |
|
warnings.warn( |
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" |
|
) |
|
""" |
|
Args: |
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size |
|
`(batch, sequence_length)` where padding elements are indicated by 0. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
(see `past_key_values`). |
|
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states |
|
""" |
|
|
|
residual = hidden_states |
|
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
hidden_states, self_attn_weights, present_key_value = self.self_attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
hidden_states = residual.to(hidden_states.device) + hidden_states |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
hidden_states = self.mlp(hidden_states) |
|
hidden_states = residual + hidden_states |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
if use_cache: |
|
outputs += (present_key_value,) |
|
|
|
return outputs |
|
|
|
|
|
QUIET_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
Parameters: |
|
config ([`QuietConfig`]): |
|
Model configuration class with all the parameters of the model. Initializing with a config file does not |
|
load the weights associated with the model, only the configuration. Check out the |
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare Quiet Model outputting raw hidden-states without any specific head on top.", |
|
QUIET_START_DOCSTRING, |
|
) |
|
class QuietPreTrainedModel(PreTrainedModel): |
|
config_class = QuietConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["QuietDecoderLayer"] |
|
_skip_keys_device_placement = "past_key_values" |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = True |
|
_supports_cache_class = True |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
|
|
QUIET_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
[What are attention masks?](../glossary#attention-mask) |
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see |
|
`past_key_values`). |
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] |
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more |
|
information on the default strategy. |
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.n_positions - 1]`. |
|
[What are position IDs?](../glossary#position-ids) |
|
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): |
|
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention |
|
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` |
|
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. |
|
Two formats are allowed: |
|
- a [`~cache_utils.Cache`] instance; |
|
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of |
|
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy |
|
cache format. |
|
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the |
|
legacy cache format will be returned. |
|
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't |
|
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` |
|
of shape `(batch_size, sequence_length)`. |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare Quiet Model outputting raw hidden-states without any specific head on top.", |
|
QUIET_START_DOCSTRING, |
|
) |
|
class QuietModel(QuietPreTrainedModel): |
|
""" |
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`QuietDecoderLayer`] |
|
Args: |
|
config: QuietConfig |
|
""" |
|
|
|
def __init__(self, config: QuietConfig): |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
self.layers = nn.ModuleList( |
|
[QuietDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] |
|
) |
|
self._attn_implementation = config._attn_implementation |
|
self.norm = QuietRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_tokens = value |
|
|
|
@add_start_docstrings_to_model_forward(QUIET_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
batch_size, seq_length = input_ids.shape |
|
elif inputs_embeds is not None: |
|
batch_size, seq_length, _ = inputs_embeds.shape |
|
else: |
|
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
past_key_values_length = 0 |
|
|
|
if use_cache: |
|
use_legacy_cache = not isinstance(past_key_values, Cache) |
|
if use_legacy_cache: |
|
past_key_values = DynamicCache.from_legacy_cache(past_key_values) |
|
past_key_values_length = past_key_values.get_usable_length(seq_length) |
|
|
|
if position_ids is None: |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
position_ids = torch.arange( |
|
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device |
|
) |
|
position_ids = position_ids.unsqueeze(0).view(-1, seq_length) |
|
else: |
|
position_ids = position_ids.view(-1, seq_length).long() |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
if self._attn_implementation == "flash_attention_2": |
|
|
|
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None |
|
elif self._attn_implementation == "sdpa" and not output_attentions and attention_mask.dim() == 2 and False: |
|
|
|
|
|
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( |
|
attention_mask, |
|
(batch_size, seq_length), |
|
inputs_embeds, |
|
past_key_values_length, |
|
) |
|
elif attention_mask is None or attention_mask.dim() == 2: |
|
|
|
attention_mask = _prepare_4d_causal_attention_mask( |
|
attention_mask, |
|
(batch_size, seq_length), |
|
inputs_embeds, |
|
past_key_values_length, |
|
sliding_window=self.config.sliding_window, |
|
) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
next_decoder_cache = None |
|
|
|
for decoder_layer in self.layers: |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
decoder_layer.__call__, |
|
hidden_states, |
|
attention_mask, |
|
position_ids, |
|
past_key_values, |
|
output_attentions, |
|
use_cache, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_values, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if use_cache: |
|
next_decoder_cache = layer_outputs[2 if output_attentions else 1] |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
next_cache = None |
|
if use_cache: |
|
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) |
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
def nonzero_mean(x, axis=None): |
|
if axis is not None: |
|
return x.sum(axis) / (x != 0).sum(axis) |
|
return x.sum() / (x != 0).sum() |
|
|
|
def loss_mean(x): |
|
return x.sum() / (x != 0).sum() |
|
|
|
class QuietForCausalLM(QuietPreTrainedModel): |
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.model = QuietModel(config) |
|
self.vocab_size = config.vocab_size |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
self.max_thoughts = config.max_thoughts |
|
self.merged_lm_and_talk_heads = config.merged_lm_and_talk_heads |
|
self.use_concat_talk_head = config.use_concat_talk_head |
|
self.use_shallow_talk = config.use_shallow_talk |
|
self.use_complex_talk_head = config.use_complex_talk_head |
|
self.use_weighted_talk_head = config.use_weighted_talk_head |
|
|
|
assert not (self.use_weighted_talk_head and self.use_shallow_talk) |
|
|
|
self.n_ahead = 1 |
|
self.n_ahead_talk = 1 |
|
self.n_passes = 1 |
|
self.n_tokens_print = 1 |
|
self.gradient_accumulation_steps = 1 |
|
self.training_steps = 0 |
|
self.tokenizer = None |
|
self.start_token_id = None |
|
self.end_token_id = None |
|
self.rm_initialized = False |
|
self.residual_talk_head = True |
|
self.thought_init_std_scale = 1e-2 |
|
|
|
self.final_only_mode = False |
|
self.first_and_last_mode = True |
|
self.first_only = False |
|
self.original_loss_weight = 0.5 |
|
|
|
self.cumulative_residual = False |
|
self.clever_residual = False |
|
self.skip_residual = False |
|
self.no_residual = True |
|
|
|
self.optimize_lm_head_only_at_start = False |
|
self.optimize_model_only_at_start = False |
|
|
|
if self.optimize_model_only_at_start: |
|
raise NotImplementedError |
|
self.train_only_thinking_embedding = False |
|
self.weighted_embeddings = False |
|
self.use_start_thought_token = True |
|
self.use_end_thought_token = True |
|
self.initialize_thought_embedding_to_normal = False |
|
self.initial_start_token = "---" |
|
self.initial_end_token = "---" |
|
self.output_logits_at_the_end = True |
|
|
|
self.wandb_enabled = False |
|
self.gumbel_temperature = 0.001 |
|
|
|
self.use_policy_loss = True |
|
self.include_policy_loss = True |
|
self.trice_mode = True |
|
self.remove_negative_rewards = True |
|
self.use_policy_loss_for_end_thought = True |
|
|
|
self.base_original_mode = False |
|
self.original_mode = False |
|
|
|
self.thought_prefix = "(Let's think step by step" |
|
self.tokenized_thought_prefix = None |
|
self.log_dict = defaultdict(int) |
|
self.eval_log_dict = defaultdict(int) |
|
self.print_final_only = True |
|
self.loss_mean = loss_mean |
|
self.all_rewards = [] |
|
self.all_unreduced_losses = [] |
|
|
|
self.start_embedding = nn.Parameter(torch.zeros(2, self.model.config.hidden_size)) |
|
self.end_embedding = nn.Parameter(torch.zeros(2, self.model.config.hidden_size)) |
|
|
|
self.policy_loss_beta = 1e6 |
|
self.embedding_scale = 1e2 |
|
self.reinforce_temperature = 3 |
|
self.base_loss_beta = 1 |
|
|
|
|
|
self.use_thought_prefix = False |
|
self.use_reparam_for_thought_embeddings = False |
|
self.use_upper_triangular = False |
|
self.subtract_mean_reward = False |
|
self.comparison_mode = False |
|
self.gumbel_detach = True |
|
|
|
|
|
self.eval_mode = False |
|
|
|
num_talk = 1 |
|
talk_input_dim = config.hidden_size if not self.use_concat_talk_head else config.hidden_size * 2 |
|
if self.use_weighted_talk_head: |
|
talk_output_dim = 1 |
|
else: |
|
talk_output_dim = config.hidden_size if self.use_shallow_talk else config.vocab_size |
|
|
|
if not self.merged_lm_and_talk_heads: |
|
if self.use_complex_talk_head: |
|
self.talk_head = nn.ModuleList([nn.Sequential( |
|
nn.Linear(talk_input_dim, config.hidden_size), |
|
nn.ReLU(), |
|
nn.Linear(config.hidden_size, config.hidden_size), |
|
nn.ReLU(), |
|
nn.Linear(config.hidden_size, talk_output_dim, bias=False) |
|
)]) |
|
else: |
|
self.talk_head = nn.ModuleList([nn.Sequential( |
|
nn.Linear(talk_input_dim, talk_output_dim, bias=False) |
|
)]) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
@torch.no_grad() |
|
def infer( |
|
self, |
|
input_ids: torch.LongTensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
): |
|
batch_size, seq_len = input_ids.shape |
|
|
|
|
|
original_input_ids = input_ids.clone() |
|
original_attention_mask = attention_mask.clone() if attention_mask is not None else None |
|
|
|
|
|
start_thought_token_id = self.tokenizer.convert_tokens_to_ids("<|startthought|>") |
|
input_ids = torch.cat([input_ids, torch.tensor([[start_thought_token_id]] * batch_size).to(input_ids.device)], dim=-1) |
|
seq_len += 1 |
|
|
|
|
|
if attention_mask is not None: |
|
attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1) |
|
|
|
|
|
continuation_length = self.n_ahead - 2 |
|
new_key_values = past_key_values |
|
generated_tokens = [] |
|
|
|
for continuation_idx in range(continuation_length): |
|
outputs = self.model( |
|
input_ids=input_ids if continuation_idx == 0 else next_token_id.unsqueeze(-1).to(input_ids.device), |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=new_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=True, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
new_key_values = outputs.past_key_values |
|
hidden_states = outputs[0] |
|
logits = self.lm_head(hidden_states) |
|
logits = logits[:, -1, :] |
|
|
|
|
|
next_token_logits = F.gumbel_softmax(logits, tau=self.gumbel_temperature, hard=True, dim=-1) |
|
next_token_id = torch.argmax(next_token_logits, dim=-1) |
|
|
|
|
|
input_ids = torch.cat([input_ids, next_token_id.unsqueeze(-1).to(input_ids.device)], dim=-1) |
|
generated_tokens.append(next_token_id) |
|
seq_len += 1 |
|
|
|
|
|
if attention_mask is not None: |
|
attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1) |
|
|
|
|
|
if position_ids is not None: |
|
position_ids = torch.cat([position_ids, (position_ids[:, -1] + 1).unsqueeze(-1)], dim=-1) |
|
|
|
|
|
end_thought_token_id = self.tokenizer.convert_tokens_to_ids("<|endthought|>") |
|
input_ids = torch.cat([input_ids, torch.tensor([[end_thought_token_id]] * batch_size).to(input_ids.device)], dim=-1) |
|
seq_len += 1 |
|
|
|
|
|
if attention_mask is not None: |
|
attention_mask = torch.cat([attention_mask, torch.ones((batch_size, 1)).to(attention_mask.device)], dim=-1) |
|
|
|
|
|
outputs_before = self.model( |
|
input_ids=original_input_ids, |
|
attention_mask=original_attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
hidden_states_before = outputs_before[0][:, -1:, :] |
|
|
|
|
|
outputs_after = self.model( |
|
input_ids=torch.cat([next_token_id.unsqueeze(-1).to(input_ids.device), torch.tensor(end_thought_token_id).unsqueeze(-1).unsqueeze(-1).to(input_ids.device)], dim=-1), |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=new_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
hidden_states_after = outputs_after[0][:, -1:, :] |
|
|
|
|
|
mixing_weight = self.talk_head[0](torch.cat([hidden_states_before, hidden_states_after], dim=-1)) |
|
|
|
|
|
mixed_hidden_states = (1 - mixing_weight) * hidden_states_before + mixing_weight * hidden_states_after |
|
|
|
|
|
logits = self.lm_head(mixed_hidden_states) |
|
|
|
|
|
generated_tokens = torch.cat(generated_tokens, dim=-1) |
|
generated_text = self.tokenizer.decode(generated_tokens.squeeze(), skip_special_tokens=True) |
|
|
|
return generated_text |
|
|
|
@add_start_docstrings_to_model_forward(QUIET_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
r""" |
|
Args: |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
Returns: |
|
Example: |
|
```python |
|
>>> from transformers import AutoTokenizer, QuietForCausalLM |
|
>>> model = QuietForCausalLM.from_pretrained("quietai/Quiet-7B-v0.1") |
|
>>> tokenizer = AutoTokenizer.from_pretrained("quietai/Quiet-7B-v0.1") |
|
>>> prompt = "Hey, are you conscious? Can you talk to me?" |
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
>>> # Generate |
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." |
|
```""" |
|
log_dict = self.log_dict if self.training else self.eval_log_dict |
|
|
|
if not self.training: |
|
n_ahead_talk_to_restore = self.n_ahead_talk |
|
n_passes_to_restore = self.n_passes |
|
self.n_ahead_talk = 1 |
|
self.n_passes = 1 |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
assert self.cumulative_residual or self.clever_residual or self.skip_residual or self.no_residual |
|
assert not (self.skip_residual and self.use_policy_loss) |
|
|
|
if self.tokenized_thought_prefix is None and self.use_thought_prefix: |
|
self.tokenized_thought_prefix = self.tokenizer(self.thought_prefix, return_tensors="pt", add_special_tokens=False)["input_ids"] |
|
|
|
def apply_head(head, states, detach=False): |
|
if detach: |
|
head_weight = head.weight.detach() |
|
else: |
|
head_weight = head.weight |
|
head_weight = head_weight.to(states.device) |
|
return (head_weight @ states.transpose(-1, -2)).transpose(-1, -2).contiguous() |
|
|
|
def idx_if_sequential(head, idx=0): |
|
if isinstance(head, nn.Sequential) or isinstance(head, nn.ModuleList): |
|
return idx_if_sequential(head[idx], idx=idx) |
|
return head |
|
|
|
def none_repeat_interleave(x, n): |
|
if x is None: |
|
return x |
|
return x.repeat_interleave(n, dim=0) |
|
|
|
if self.n_passes > 1: |
|
input_ids = none_repeat_interleave(input_ids, self.n_passes) |
|
attention_mask = none_repeat_interleave(attention_mask, self.n_passes) |
|
position_ids = none_repeat_interleave(position_ids, self.n_passes) |
|
inputs_embeds = none_repeat_interleave(inputs_embeds, self.n_passes) |
|
labels = none_repeat_interleave(labels, self.n_passes) |
|
if past_key_values is not None: |
|
past_key_values = [none_repeat_interleave(p, self.n_passes) for p in past_key_values] |
|
cur_token_indices = torch.arange(input_ids.shape[1], device=input_ids.device) |
|
|
|
self.tokenizer_has_start_thought_token = True |
|
self.tokenizer_has_end_thought_token = True |
|
if self.start_token_id is None: |
|
self.start_token_id = self.tokenizer.convert_tokens_to_ids("<|startthought|>") |
|
if self.start_token_id == 0: |
|
self.start_token_id = self.tokenizer.bos_token_id |
|
self.tokenizer_has_start_thought_token = False |
|
elif self.use_start_thought_token: |
|
|
|
base_start_id = self.tokenizer.encode(self.initial_start_token, add_special_tokens=False)[0] |
|
if self.initialize_thought_embedding_to_normal: |
|
self.start_embedding.data = torch.zeros_like(self.start_embedding.data) |
|
else: |
|
self.start_embedding.data[0] = self.model.embed_tokens.weight.data[base_start_id].clone().detach() / self.embedding_scale |
|
self.start_embedding.data[1] = torch.log(self.model.embed_tokens.weight.data.std(dim=0) * self.thought_init_std_scale / self.embedding_scale) |
|
if self.end_token_id is None: |
|
self.end_token_id = self.tokenizer.convert_tokens_to_ids("<|endthought|>") |
|
if self.end_token_id == 0: |
|
self.end_token_id = self.tokenizer.eos_token_id |
|
self.tokenizer_has_end_thought_token = False |
|
elif self.use_end_thought_token: |
|
|
|
base_end_id = self.tokenizer.encode(self.initial_end_token, add_special_tokens=False)[0] |
|
if self.initialize_thought_embedding_to_normal: |
|
self.end_embedding.data = torch.zeros_like(self.end_embedding.data) |
|
else: |
|
self.end_embedding.data[0] = self.model.embed_tokens.weight.data[base_end_id].clone().detach() / self.embedding_scale |
|
self.end_embedding.data[1] = torch.log(self.model.embed_tokens.weight.data.std(dim=0) * self.thought_init_std_scale / self.embedding_scale) |
|
|
|
if not self.rm_initialized and (self.n_ahead > 1 or not self.base_original_mode): |
|
self.rm_initialized = True |
|
if not self.use_shallow_talk: |
|
head = self.talk_head[0] |
|
cur_head = head[-1] if isinstance(head, nn.Sequential) else head |
|
talk_input_dim = cur_head.weight.data.shape[1] |
|
talk_output_dim = 1 if self.use_weighted_talk_head else self.lm_head.weight.data.shape[0] |
|
cur_head.weight.data = torch.zeros(talk_output_dim, talk_input_dim, device=cur_head.weight.device, dtype=cur_head.weight.dtype) |
|
else: |
|
|
|
def lambda_transform(cur_head): |
|
if cur_head.weight.data.shape[0] != cur_head.weight.data.shape[1]: |
|
return torch.cat([ |
|
torch.eye( |
|
cur_head.weight.data.shape[0], |
|
device=cur_head.weight.device, |
|
dtype=cur_head.weight.dtype |
|
), |
|
torch.zeros( |
|
cur_head.weight.data.shape[0], |
|
cur_head.weight.data.shape[1] - cur_head.weight.data.shape[0], |
|
device=cur_head.weight.device, |
|
dtype=cur_head.weight.dtype |
|
)], dim=1) |
|
return torch.eye( |
|
cur_head.weight.data.shape[0], |
|
device=cur_head.weight.device, |
|
dtype=cur_head.weight.dtype |
|
) |
|
if isinstance(self.talk_head[0], nn.Sequential): |
|
for cur_head in self.talk_head[0]: |
|
|
|
if hasattr(cur_head, "weight"): |
|
cur_head.weight.data = lambda_transform(cur_head) |
|
else: |
|
self.talk_head[-1].weight.data = lambda_transform(self.talk_head[0]) |
|
|
|
loss = None |
|
prev_rm_tokens = None |
|
cur_rm_tokens = None |
|
prev_rm_logits = None |
|
prev_sample_probs = None |
|
did_skip_sampling = None |
|
skip_sampling = None |
|
sample_probs = None |
|
hidden_states = None |
|
logits = None |
|
talk_kl_penalty = None |
|
rm_logits = None |
|
residual_logits = None |
|
probabilities_2d = None |
|
prev_probabilities_2d = None |
|
policy_reward = None |
|
logits_to_output = None |
|
batch_size, seq_len = input_ids.shape |
|
base_input_ids = input_ids.clone() |
|
loss_list = [] |
|
dqn_loss_list = [] |
|
sampled_token_history = [] |
|
sample_probs_history = [] |
|
action_loglikelihoods_list = [] |
|
|
|
if self.use_end_thought_token or self.use_start_thought_token: |
|
if not self.use_reparam_for_thought_embeddings: |
|
start_embedding = self.start_embedding[0].unsqueeze(0) * self.embedding_scale |
|
end_embedding = self.end_embedding[0].unsqueeze(0) * self.embedding_scale |
|
else: |
|
start_embedding = self.start_embedding * self.embedding_scale |
|
end_embedding = self.end_embedding * self.embedding_scale |
|
base_embeddings = self.model.embed_tokens.weight |
|
if self.train_only_thinking_embedding: |
|
base_embeddings = base_embeddings.detach() |
|
|
|
fwd_iters = 1 if self.original_mode else self.n_ahead + self.n_ahead_talk - 1 |
|
for ahead_idx in range(fwd_iters): |
|
past_key_values_length = 0 |
|
if past_key_values is not None: |
|
use_legacy_cache = not isinstance(past_key_values, Cache) |
|
if use_legacy_cache: |
|
past_key_values = DynamicCache.from_legacy_cache(past_key_values) |
|
past_key_values_length = past_key_values.get_usable_length(seq_len) |
|
|
|
if position_ids is None: |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
position_ids = torch.arange( |
|
past_key_values_length, seq_len + past_key_values_length, dtype=torch.long, device=device |
|
) |
|
position_ids = position_ids.unsqueeze(0).view(-1, seq_len) |
|
else: |
|
position_ids = position_ids.view(-1, seq_len).long() |
|
|
|
if inputs_embeds is None: |
|
contains_start = self.use_start_thought_token and (input_ids == self.start_token_id).any() |
|
contains_end = self.use_end_thought_token and (input_ids == self.end_token_id).any() |
|
contains_thought = contains_start or contains_end |
|
if contains_thought: |
|
thought_id = self.start_token_id if contains_start else self.end_token_id |
|
cur_thought_embedding = start_embedding if contains_start else end_embedding |
|
if self.use_reparam_for_thought_embeddings: |
|
inputs_embeds = torch.randn(batch_size, seq_len, self.model.config.hidden_size, device=input_ids.device, dtype=cur_thought_embedding.dtype) |
|
inputs_embeds = inputs_embeds.detach() * torch.exp(cur_thought_embedding[1]) + cur_thought_embedding[0] |
|
if contains_start: |
|
sampled_start = inputs_embeds.clone().detach() |
|
if contains_end: |
|
sampled_end = inputs_embeds.clone().detach() |
|
else: |
|
inputs_embeds = cur_thought_embedding.unsqueeze(0).repeat(batch_size, seq_len, 1) |
|
else: |
|
with torch.set_grad_enabled(not self.train_only_thinking_embedding): |
|
inputs_embeds = self.model.embed_tokens(input_ids) |
|
|
|
if self.n_ahead != 1 or self.n_ahead_talk != 1 or self.comparison_mode: |
|
if attention_mask is None: |
|
base_attention_mask = torch.triu(torch.ones(seq_len, seq_len), diagonal=0).to(input_ids.device) |
|
base_attention_mask = base_attention_mask.view(1, 1, seq_len, seq_len) |
|
base_attention_mask = base_attention_mask.repeat(input_ids.shape[0], 1, 1, 1) |
|
attention_mask = base_attention_mask |
|
breakpoint() |
|
elif attention_mask.dim() == 2: |
|
if seq_len + past_key_values_length != attention_mask.shape[-1]: |
|
breakpoint() |
|
attention_mask = torch.cat( |
|
[torch.ones((attention_mask.shape[0], past_key_values_length), dtype=attention_mask.dtype, device=attention_mask.device), attention_mask], |
|
dim=-1 |
|
) |
|
|
|
attention_mask = _prepare_4d_causal_attention_mask( |
|
attention_mask, |
|
(batch_size, seq_len), |
|
inputs_embeds, |
|
past_key_values_length, |
|
sliding_window=self.config.sliding_window, |
|
) |
|
|
|
outputs = self.model( |
|
|
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
prev_hidden_states = hidden_states |
|
hidden_states = outputs[0] |
|
prev_rm_logits = rm_logits |
|
prev_rm_tokens = cur_rm_tokens |
|
|
|
if ahead_idx == 0: |
|
hidden_states_lm = hidden_states |
|
logits = self.lm_head(hidden_states_lm) |
|
base_hidden_states = hidden_states.clone() |
|
initial_loss_logits = logits.clone() |
|
if self.optimize_lm_head_only_at_start or self.optimize_model_only_at_start: |
|
logits = logits.detach() |
|
base_hidden_states = base_hidden_states.detach() |
|
if self.optimize_model_only_at_start: |
|
hidden_states = hidden_states.detach() |
|
base_logits = logits.clone() |
|
else: |
|
talk_hidden_states = hidden_states |
|
if self.merged_lm_and_talk_heads: |
|
assert self.no_residual |
|
residual_logits = self.lm_head(hidden_states) |
|
talk_hidden_states = hidden_states |
|
else: |
|
if ahead_idx > self.n_ahead - 1: |
|
cur_base_hidden = torch.cat([ |
|
base_hidden_states[..., ahead_idx - self.n_ahead + 1:, :], |
|
base_hidden_states[..., :ahead_idx - self.n_ahead + 1, :] |
|
], dim=-2) |
|
else: |
|
cur_base_hidden = base_hidden_states |
|
|
|
if self.use_concat_talk_head: |
|
|
|
head_input_hidden_states = torch.cat([cur_base_hidden, talk_hidden_states], dim=-1) |
|
else: |
|
head_input_hidden_states = talk_hidden_states |
|
|
|
residual_logits = self.talk_head[0](head_input_hidden_states) |
|
if self.use_shallow_talk: |
|
residual_logits = apply_head(self.lm_head, residual_logits, detach=self.optimize_lm_head_only_at_start) |
|
residual_logits = residual_logits.to(logits.device) |
|
if self.use_weighted_talk_head: |
|
|
|
residual_logits = cur_base_hidden * (1 - residual_logits) + talk_hidden_states * residual_logits |
|
residual_logits = apply_head(self.lm_head, residual_logits, detach=self.optimize_lm_head_only_at_start) |
|
|
|
assert sum([self.cumulative_residual, self.clever_residual, self.skip_residual, self.no_residual]) == 1 |
|
if self.clever_residual: |
|
if ahead_idx >= self.n_ahead - 1: |
|
|
|
cur_base_logits = torch.cat([ |
|
base_logits[..., ahead_idx - self.n_ahead + 1:, :], |
|
base_logits[..., :ahead_idx - self.n_ahead + 1, :] |
|
], dim=-2) |
|
if self.optimize_lm_head_only_at_start: |
|
cur_base_logits = cur_base_logits.detach() |
|
logits = cur_base_logits + residual_logits |
|
else: |
|
logits += residual_logits / self.n_ahead |
|
elif self.cumulative_residual: |
|
if self.residual_talk_head: |
|
if ahead_idx < self.n_ahead: |
|
logits += residual_logits |
|
else: |
|
|
|
cur_base_logits = torch.cat([ |
|
base_logits[..., ahead_idx - self.n_ahead + 1:, :], |
|
base_logits[..., :ahead_idx - self.n_ahead + 1, :] |
|
], dim=-2) |
|
if self.optimize_lm_head_only_at_start: |
|
cur_base_logits = cur_base_logits.detach() |
|
logits = cur_base_logits + residual_logits |
|
else: |
|
if ahead_idx < self.n_ahead: |
|
logits += residual_logits |
|
else: |
|
logits = residual_logits |
|
elif self.skip_residual: |
|
if ahead_idx >= self.n_ahead: |
|
|
|
cur_base_logits = torch.cat([ |
|
base_logits[..., ahead_idx - self.n_ahead + 1:, :], |
|
base_logits[..., :ahead_idx - self.n_ahead + 1, :] |
|
], dim=-2) |
|
if self.optimize_lm_head_only_at_start: |
|
cur_base_logits = cur_base_logits.detach() |
|
logits = cur_base_logits |
|
elif self.no_residual: |
|
logits = residual_logits |
|
else: |
|
logits = base_logits + residual_logits |
|
|
|
attempted = False |
|
talk_loss_list = [] |
|
if self.original_mode or (self.n_ahead == 1) or (self.comparison_mode and ahead_idx == 0): |
|
loss = None |
|
attempted = True |
|
|
|
if labels is not None: |
|
for shift_amount in range(self.n_ahead_talk): |
|
|
|
|
|
|
|
if ahead_idx == 0 and self.optimize_lm_head_only_at_start: |
|
loss_logits = initial_loss_logits |
|
else: |
|
loss_logits = logits |
|
shift_logits = loss_logits[..., shift_amount:-1, :].contiguous() |
|
shift_labels = labels[..., 1 + shift_amount:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss(reduction="none") |
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
shift_labels = shift_labels.view(-1).clone() |
|
|
|
shift_labels[shift_labels == self.tokenizer.pad_token_id] = -100 |
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
if not self.comparison_mode and not (self.optimize_lm_head_only_at_start and (self.n_ahead + self.n_ahead_talk > 2)) or self.original_mode: |
|
loss_list.append(loss) |
|
talk_loss_list.append(nonzero_mean(loss).detach()) |
|
|
|
if not attempted or self.comparison_mode: |
|
rm_hidden_states = hidden_states |
|
|
|
rm_logits = apply_head(self.lm_head, rm_hidden_states, detach=self.optimize_lm_head_only_at_start) |
|
|
|
|
|
if self.tokenizer_has_start_thought_token: |
|
rm_logits[..., self.start_token_id] = -1e10 |
|
if self.tokenizer_has_end_thought_token: |
|
rm_logits[..., self.end_token_id] = -1e10 |
|
probabilities = rm_logits |
|
if probabilities_2d is not None: |
|
prev_probabilities_2d = probabilities_2d.clone() |
|
probabilities_2d = probabilities.view(-1, probabilities.size(-1)) |
|
|
|
did_skip_sampling = skip_sampling |
|
skip_sampling = False |
|
if ahead_idx == 0 and self.use_start_thought_token: |
|
override_token = self.start_token_id |
|
elif self.use_thought_prefix and ahead_idx < self.tokenized_thought_prefix.shape[-1]: |
|
override_token = self.tokenized_thought_prefix[..., ahead_idx] |
|
elif ahead_idx == self.n_ahead - 2 and self.use_end_thought_token: |
|
override_token = self.end_token_id |
|
else: |
|
override_token = None |
|
if override_token is not None and self.n_ahead > 1: |
|
|
|
probabilities_2d = torch.zeros_like(probabilities_2d) |
|
probabilities_2d[:, override_token] = 1.0 |
|
skip_sampling = True |
|
elif ahead_idx >= self.n_ahead - 1: |
|
if labels is not None: |
|
cur_talk_n = ahead_idx - (self.n_ahead - 1) + 1 |
|
shift_labels = labels[..., cur_talk_n:].contiguous().to(probabilities_2d.device) |
|
padding = torch.full_like( |
|
labels[..., :cur_talk_n], |
|
self.tokenizer.pad_token_id, |
|
dtype=torch.long, |
|
device=shift_labels.device |
|
) |
|
new_rm_tokens = torch.cat( |
|
[shift_labels, padding], |
|
dim=-1 |
|
) |
|
new_rm_tokens = torch.clamp(new_rm_tokens, 0, self.vocab_size - 1) |
|
probabilities_2d = F.one_hot(new_rm_tokens, num_classes=self.vocab_size).reshape(-1, self.vocab_size).to(probabilities_2d.dtype) |
|
skip_sampling = True |
|
else: |
|
continue |
|
|
|
temperature = self.gumbel_temperature if self.training else 0.001 |
|
prev_sample_probs = sample_probs |
|
sample_probs = probabilities_2d |
|
|
|
if ahead_idx < self.n_ahead - 1 and not skip_sampling: |
|
probabilities_2d = F.gumbel_softmax(sample_probs, tau=temperature, hard=True, dim=-1) |
|
if self.gumbel_detach: |
|
probabilities_2d = probabilities_2d.detach() |
|
sampled_token_history.append(probabilities_2d.argmax(dim=-1).detach().cpu()) |
|
|
|
|
|
contains_start = self.use_start_thought_token and (probabilities_2d[..., self.start_token_id].sum() > 0) |
|
contains_end = self.use_end_thought_token and (probabilities_2d[..., self.end_token_id].sum() > 0) |
|
contains_thought = contains_start or contains_end |
|
|
|
|
|
if self._attn_implementation == "flash_attention_2": |
|
probabilities_2d = probabilities_2d.view(batch_size, seq_len, -1) |
|
|
|
if contains_thought: |
|
thought_id = self.start_token_id if contains_start else self.end_token_id |
|
cur_thought_embedding = start_embedding if contains_start else end_embedding |
|
|
|
if self.use_reparam_for_thought_embeddings: |
|
inputs_embeds = torch.randn(batch_size, seq_len, self.model.config.hidden_size, device=input_ids.device, dtype=cur_thought_embedding.dtype) |
|
inputs_embeds = inputs_embeds * torch.exp(cur_thought_embedding[1]) + cur_thought_embedding[0] |
|
if contains_start: |
|
sampled_start = inputs_embeds.clone().detach() |
|
else: |
|
sampled_end = inputs_embeds.clone().detach() |
|
else: |
|
inputs_embeds = cur_thought_embedding.unsqueeze(0).repeat(batch_size, seq_len, 1) |
|
inputs_embeds = inputs_embeds.view(probabilities.size(0), probabilities.size(1), -1).to(self.model.embed_tokens.weight.dtype) |
|
else: |
|
with torch.set_grad_enabled(not self.train_only_thinking_embedding): |
|
inputs_embeds = probabilities_2d @ (self.model.embed_tokens.weight.to(probabilities.device).to(probabilities.dtype)) |
|
|
|
inputs_embeds = inputs_embeds.view(probabilities.size(0), probabilities.size(1), -1).to(self.model.embed_tokens.weight.dtype) |
|
|
|
if len(attention_mask.shape) == 2: |
|
breakpoint() |
|
else: |
|
original_attention = attention_mask[..., :attention_mask.shape[-2]] |
|
if self.use_upper_triangular: |
|
new_attention = original_attention |
|
else: |
|
original_attention = original_attention == attention_mask.max() |
|
|
|
if not attention_mask.dtype == torch.bfloat16: |
|
new_attention = torch.eye( |
|
seq_len, dtype=attention_mask.dtype, device=attention_mask.device |
|
) |
|
else: |
|
new_attention = torch.eye( |
|
seq_len, dtype=torch.float32, device=attention_mask.device |
|
).to(attention_mask.dtype) |
|
|
|
new_attention = new_attention.view(1, 1, seq_len, seq_len).repeat(input_ids.shape[0], 1, 1, 1) |
|
new_attention = new_attention * original_attention |
|
new_attention[new_attention == 0] = attention_mask.min() |
|
new_attention[new_attention == 1] = attention_mask.max() |
|
attention_mask = torch.cat([attention_mask, new_attention], dim=-1) |
|
past_key_values = outputs.past_key_values |
|
position_ids = position_ids + 1 |
|
|
|
if labels is not None and (self.n_ahead > 1 or not self.base_original_mode): |
|
|
|
|
|
|
|
if ahead_idx == 0 and self.optimize_lm_head_only_at_start: |
|
loss_logits = initial_loss_logits |
|
else: |
|
loss_logits = logits |
|
shift_idx = 1 + max(0, ahead_idx - (self.n_ahead - 1)) |
|
shift_logits = loss_logits[..., :-shift_idx, :].contiguous() |
|
shift_labels = labels[..., shift_idx:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss(reduction="none") |
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
|
|
shift_labels = torch.where(shift_labels == self.tokenizer.pad_token_id, -100, shift_labels) |
|
unreduced_loss = loss_fct(shift_logits, shift_labels) |
|
if torch.any(unreduced_loss != unreduced_loss): |
|
raise ValueError("NaN loss") |
|
unreduced_loss = unreduced_loss.reshape(logits.shape[0], -1) |
|
loss_list.append(unreduced_loss) |
|
|
|
|
|
if self.use_policy_loss and ahead_idx > 0 and (ahead_idx > 1 or not self.use_start_thought_token): |
|
|
|
previous_loss = loss_list[-2] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if ahead_idx < self.n_ahead - 1: |
|
shift_amount = 0 |
|
original_dqn_reward = (previous_loss - unreduced_loss).detach() |
|
if self.first_and_last_mode: |
|
original_dqn_reward = original_dqn_reward * 0.0 |
|
else: |
|
|
|
|
|
shift_amount = max(0, ahead_idx - (self.n_ahead - 1)) |
|
|
|
|
|
|
|
|
|
cur_policy_shift_logits = initial_loss_logits[..., shift_amount:-1, :].contiguous().detach() |
|
cur_policy_shift_labels = labels[..., 1 + shift_amount:].contiguous() |
|
|
|
cur_policy_loss_fct = CrossEntropyLoss(reduction="none") |
|
cur_policy_shift_logits = cur_policy_shift_logits.view(-1, self.config.vocab_size) |
|
cur_policy_shift_labels = cur_policy_shift_labels.view(-1).clone() |
|
|
|
cur_policy_shift_labels[cur_policy_shift_labels == self.tokenizer.pad_token_id] = -100 |
|
cur_policy_shift_labels = cur_policy_shift_labels.to(cur_policy_shift_labels.device) |
|
cur_policy_reward_base_loss = loss_fct( |
|
cur_policy_shift_logits, cur_policy_shift_labels.to(cur_policy_shift_logits.device) |
|
).reshape(logits.shape[0], -1) |
|
original_dqn_reward = cur_policy_reward_base_loss.detach() - unreduced_loss |
|
|
|
if not did_skip_sampling: |
|
nonzero_indices = prev_probabilities_2d.nonzero() |
|
action_loglikelihoods = F.log_softmax(prev_sample_probs / self.reinforce_temperature, dim=-1)[nonzero_indices[:, 0], nonzero_indices[:, 1]] |
|
action_loglikelihoods_2d = action_loglikelihoods.reshape(batch_size, -1)[:, :-1 - shift_amount] |
|
action_loglikelihoods_list.append(action_loglikelihoods_2d) |
|
if policy_reward is None: |
|
policy_reward = original_dqn_reward[:, :-(self.n_ahead_talk - shift_amount)] |
|
else: |
|
if self.n_ahead_talk > shift_amount: |
|
added_reward = original_dqn_reward[:, :-(self.n_ahead_talk - shift_amount)] |
|
else: |
|
added_reward = original_dqn_reward |
|
policy_reward += added_reward |
|
|
|
if self.use_policy_loss and ahead_idx == self.n_ahead + self.n_ahead_talk - 2: |
|
|
|
if self.use_reparam_for_thought_embeddings and (self.use_start_thought_token or self.use_end_thought_token): |
|
|
|
|
|
|
|
if self.use_start_thought_token: |
|
exp_start_std = torch.exp(start_embedding[1]) |
|
start_loglikelihood = -0.5 * (sampled_start.detach() - start_embedding[0]) ** 2 / exp_start_std ** 2 - start_embedding[1] - 0.5 * math.log(2 * math.pi) |
|
start_loglikelihood = start_loglikelihood.mean(dim=-1) |
|
if self.use_end_thought_token: |
|
exp_end_std = torch.exp(end_embedding[1]) |
|
end_loglikelihood = -0.5 * (sampled_end.detach() - end_embedding[0]) ** 2 / exp_end_std ** 2 - end_embedding[1] - 0.5 * math.log(2 * math.pi) |
|
end_loglikelihood = end_loglikelihood.mean(dim=-1) |
|
|
|
if self.use_end_thought_token and self.use_policy_loss_for_end_thought: |
|
action_loglikelihoods_list.append(end_loglikelihood) |
|
if self.use_start_thought_token: |
|
action_loglikelihoods_list.append(start_loglikelihood) |
|
|
|
if ahead_idx == self.n_ahead + self.n_ahead_talk - 2 and self.eval_mode: |
|
with torch.no_grad(): |
|
|
|
filtered_tokens = input_ids[:, :policy_reward.shape[-1]].cpu().detach().numpy().flatten() |
|
filtered_tokens_mask = filtered_tokens != self.tokenizer.pad_token_id |
|
filtered_tokens = filtered_tokens[filtered_tokens_mask] |
|
filtered_rewards = policy_reward.float().cpu().detach().numpy()[:, :seq_len - self.n_ahead_talk].flatten() |
|
filtered_rewards = filtered_rewards[filtered_tokens_mask] |
|
|
|
abs_reward_list = np.abs(policy_reward.float().cpu().detach().numpy()[:, :seq_len - self.n_ahead_talk].flatten()) |
|
abs_reward_list = abs_reward_list[filtered_tokens_mask] |
|
medium_quantile = np.quantile(abs_reward_list, 0.5) |
|
upper_quantile = np.quantile(abs_reward_list, 0.95) |
|
|
|
save_tokens_with_rewards_to_pdf( |
|
filtered_tokens, |
|
[0] + filtered_rewards.tolist(), |
|
self.tokenizer, |
|
output_file=f"texts/rewards_talk_{self.n_ahead_talk}_{self.training_steps}.pdf", |
|
eps=medium_quantile, |
|
eps2=upper_quantile, |
|
) |
|
|
|
def plot_kde(data, losses): |
|
sns.set(style="whitegrid") |
|
|
|
sns.kdeplot(data, fill=True) |
|
|
|
plt.title("KDE Plot") |
|
plt.xlabel("Value") |
|
plt.ylabel("Density") |
|
|
|
plt.savefig(f"texts/kde_talk_{self.n_ahead_talk}_{self.training_steps}.pdf") |
|
|
|
plt.close() |
|
|
|
|
|
base_colors = sns.color_palette("light:#5A9", n_colors=256) |
|
base_cmap = LinearSegmentedColormap.from_list("log_light", base_colors) |
|
log_norm = LogNorm(vmin=1e-3, vmax=10) |
|
|
|
sns.kdeplot(x=data, y=losses, fill=True, levels=20, norm=log_norm, cut=0, linewidths=0) |
|
|
|
plt.xlim(-1, 1) |
|
plt.ylim(0, 25) |
|
plt.savefig(f"texts/jointer_talk_{self.n_ahead_talk}_{self.training_steps}.pdf") |
|
plt.close() |
|
|
|
self.all_rewards.extend(filtered_rewards) |
|
self.all_unreduced_losses.extend(unreduced_loss[:, :-1].flatten()[filtered_tokens_mask].float().flatten().cpu().detach().numpy()) |
|
plot_kde(self.all_rewards, self.all_unreduced_losses) |
|
|
|
for action_loglikelihoods_2d in action_loglikelihoods_list: |
|
train_policy_reward = policy_reward |
|
|
|
|
|
if self.trice_mode and self.n_passes > 1: |
|
batched_policy_reward = train_policy_reward.reshape(-1, self.n_passes, train_policy_reward.shape[-1]) |
|
|
|
train_policy_reward = batched_policy_reward - batched_policy_reward.mean(dim=1, keepdim=True) |
|
train_policy_reward = train_policy_reward.reshape(-1, train_policy_reward.shape[-1]) |
|
|
|
if self.subtract_mean_reward: |
|
train_policy_reward = train_policy_reward - train_policy_reward.mean() |
|
if self.remove_negative_rewards: |
|
fixed_policy_reward = train_policy_reward.detach().clamp(min=0) |
|
else: |
|
fixed_policy_reward = train_policy_reward.detach() |
|
actor_loss = -fixed_policy_reward * action_loglikelihoods_2d[:, :policy_reward.shape[-1]].to(policy_reward.device) |
|
if action_loglikelihoods_2d.mean() < -1e4 and not self.use_policy_loss_just_for_thoughts: |
|
|
|
break |
|
dqn_loss_list.append(actor_loss.mean()) |
|
|
|
if loss_list: |
|
if self.first_and_last_mode: |
|
loss = sum( |
|
self.loss_mean(loss_list[-(i + 1)]) for i in range(self.n_ahead_talk) |
|
) * (1 - self.original_loss_weight) / self.n_ahead_talk |
|
loss = loss + self.loss_mean(loss_list[0]) * self.original_loss_weight |
|
|
|
|
|
for i in range(1, len(loss_list) - self.n_ahead_talk): |
|
loss_list[i] = loss_list[i] * math.nan |
|
elif self.first_only: |
|
loss = self.loss_mean(loss_list[0]) |
|
elif self.final_only_mode: |
|
loss = sum( |
|
self.loss_mean(loss_list[-i]) for i in range(1, self.n_ahead_talk + 1) |
|
) / self.n_ahead_talk |
|
else: |
|
loss = None |
|
for i in range(len(loss_list)): |
|
cur_loss = self.loss_mean(loss_list[i]) |
|
if loss is not None: |
|
loss = loss + cur_loss.to(loss.device) |
|
else: |
|
loss = cur_loss |
|
loss = loss / len(loss_list) |
|
|
|
loss = loss * self.base_loss_beta |
|
|
|
if dqn_loss_list: |
|
dqn_loss = sum(dqn_loss_list) / len(dqn_loss_list) |
|
if self.include_policy_loss: |
|
if loss is not None: |
|
loss += dqn_loss * self.policy_loss_beta |
|
else: |
|
loss = dqn_loss * self.policy_loss_beta |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
base_log_dict = { |
|
f"loss_{i}": nonzero_mean(loss_list[i]) for i in range(len(loss_list)) |
|
} |
|
|
|
if loss is not None: |
|
base_log_dict["loss_train"] = loss.item() |
|
|
|
for loss_key, loss_val in base_log_dict.items(): |
|
log_dict[loss_key] += loss_val / self.n_tokens_print |
|
|
|
if self.use_policy_loss and policy_reward is not None: |
|
log_dict["policy_loss"] += dqn_loss / self.n_tokens_print |
|
log_dict["policy_reward"] += policy_reward.mean() / self.n_tokens_print |
|
|
|
if not loss_list: |
|
if loss is not None: |
|
log_dict["loss_0"] += loss / self.n_tokens_print |
|
else: |
|
log_dict["loss_final"] += nonzero_mean(loss_list[-1]) / self.n_tokens_print |
|
log_dict["loss_talk"] += sum(nonzero_mean(cur_loss_item) for cur_loss_item in loss_list[-self.n_ahead_talk:]) / self.n_ahead_talk / self.n_tokens_print |
|
|
|
|
|
if loss_list: |
|
for i in range(len(loss_list)): |
|
talk_idx = min(max(i - (self.n_ahead - 1), 0), len(talk_loss_list) - 1) |
|
if not talk_loss_list: |
|
cur_talk_loss = nonzero_mean(loss_list[0]) |
|
else: |
|
cur_talk_loss = talk_loss_list[talk_idx] |
|
log_dict[f"rel_loss_{i}"] += (nonzero_mean(loss_list[i]) - cur_talk_loss) / self.n_tokens_print |
|
if self.training: |
|
self.training_steps += 1 |
|
try: |
|
|
|
if self.wandb_enabled: |
|
if self.training_steps % (self.n_tokens_print) == 0 or not self.training: |
|
if not self.training: |
|
new_log_dict = {} |
|
for key in list(log_dict.keys()): |
|
new_log_dict["eval_" + key] = log_dict[key] |
|
log_dict = new_log_dict |
|
log_dict["training_steps"] = self.training_steps |
|
log_dict["batch_size"] = batch_size |
|
log_dict["example_steps"] = self.training_steps * batch_size * self.gradient_accumulation_steps |
|
if self.n_ahead > 1: |
|
log_dict["compute_steps"] = self.training_steps * batch_size * (self.n_ahead + self.n_ahead_talk - 1) * self.gradient_accumulation_steps |
|
else: |
|
log_dict["compute_steps"] = self.training_steps * batch_size * self.gradient_accumulation_steps |
|
|
|
for key in list(log_dict.keys()): |
|
if log_dict[key] != log_dict[key]: |
|
del log_dict[key] |
|
if self.training: |
|
wandb.log(log_dict) |
|
if self.training: |
|
self.log_dict = defaultdict(int) |
|
else: |
|
self.eval_log_dict = defaultdict(int) |
|
except Exception as e: |
|
pass |
|
|
|
if not self.training: |
|
self.n_ahead_talk = n_ahead_talk_to_restore |
|
self.n_passes = n_passes_to_restore |
|
return CausalLMOutputWithPast( |
|
loss=loss if loss is not None else None, |
|
logits=(rm_logits if self.n_ahead > 1 else logits) if not self.output_logits_at_the_end else logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs |
|
): |
|
|
|
if past_key_values is not None: |
|
if isinstance(past_key_values, Cache): |
|
cache_length = past_key_values.get_seq_length() |
|
past_length = past_key_values.seen_tokens |
|
max_cache_length = past_key_values.get_max_length() |
|
else: |
|
cache_length = past_length = past_key_values[0][0].shape[2] |
|
max_cache_length = None |
|
|
|
|
|
|
|
|
|
|
|
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: |
|
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] |
|
|
|
|
|
elif past_length < input_ids.shape[1]: |
|
input_ids = input_ids[:, past_length:] |
|
|
|
|
|
|
|
if ( |
|
max_cache_length is not None |
|
and attention_mask is not None |
|
and cache_length + input_ids.shape[1] > max_cache_length |
|
): |
|
attention_mask = attention_mask[:, -max_cache_length:] |
|
|
|
position_ids = kwargs.get("position_ids", None) |
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -input_ids.shape[1] :] |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
"position_ids": position_ids, |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
} |
|
) |
|
return model_inputs |
|
|
|
@staticmethod |
|
def _reorder_cache(past_key_values, beam_idx): |
|
reordered_past = () |
|
for layer_past in past_key_values: |
|
reordered_past += ( |
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), |
|
) |
|
return reordered_past |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
The Quiet Model transformer with a sequence classification head on top (linear layer). |
|
[`QuietForSequenceClassification`] uses the last token in order to do the classification, as other causal models |
|
(e.g. GPT-2) do. |
|
Since it does classification on the last token, it requires to know the position of the last token. If a |
|
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If |
|
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the |
|
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in |
|
each row of the batch). |
|
""", |
|
QUIET_START_DOCSTRING, |
|
) |
|
|
|
class QuietForSequenceClassification(QuietPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.model = QuietModel(config) |
|
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
@add_start_docstrings_to_model_forward(QUIET_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, SequenceClassifierOutputWithPast]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
transformer_outputs = self.model( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
hidden_states = transformer_outputs[0] |
|
logits = self.score(hidden_states) |
|
|
|
if input_ids is not None: |
|
batch_size = input_ids.shape[0] |
|
else: |
|
batch_size = inputs_embeds.shape[0] |
|
|
|
if self.config.pad_token_id is None and batch_size != 1: |
|
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") |
|
if self.config.pad_token_id is None: |
|
sequence_lengths = -1 |
|
else: |
|
if input_ids is not None: |
|
|
|
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 |
|
sequence_lengths = sequence_lengths % input_ids.shape[-1] |
|
sequence_lengths = sequence_lengths.to(logits.device) |
|
else: |
|
sequence_lengths = -1 |
|
|
|
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] |
|
|
|
loss = None |
|
if labels is not None: |
|
labels = labels.to(logits.device) |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(pooled_logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(pooled_logits, labels) |
|
if not return_dict: |
|
output = (pooled_logits,) + transformer_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutputWithPast( |
|
loss=loss, |
|
logits=pooled_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |