from share import * import pytorch_lightning as pl from torch.utils.data import DataLoader from laion_face_dataset import LaionDataset from cldm.logger import ImageLogger from cldm.model import create_model, load_state_dict # Configs resume_path = './models/controlnet_sd15_laion_face.ckpt' batch_size = 8 logger_freq = 2500 learning_rate = 1e-5 sd_locked = True only_mid_control = False # First use cpu to load models. Pytorch Lightning will automatically move it to GPUs. model = create_model('./models/cldm_v15.yaml').cpu() model.load_state_dict(load_state_dict(resume_path, location='cpu')) model.learning_rate = learning_rate model.sd_locked = sd_locked model.only_mid_control = only_mid_control # Save every so often: ckpt_callback = pl.callbacks.ModelCheckpoint( dirpath="./checkpoints/", filename="controlnet_sd15_laion_face_{epoch}_{step}_{loss}.ckpt", monitor='train/loss_simple_step', save_top_k=5, every_n_train_steps=5000, save_last=True, ) # Misc dataset = LaionDataset() dataloader = DataLoader(dataset, num_workers=0, batch_size=batch_size, shuffle=True) logger = ImageLogger(batch_frequency=logger_freq) trainer = pl.Trainer(gpus=1, precision=32, callbacks=[logger, ckpt_callback]) # Train! trainer.fit(model, dataloader)