{ "best_metric": 74.30141333980744, "best_model_checkpoint": "/mounts/work/faeze/attempt/new_setting_outputs/source_adapter/crisis_9_multi/100/checkpoint-448", "epoch": 200.0, "global_step": 3200, "is_hyper_param_search": false, "is_local_process_zero": true, "is_world_process_zero": true, "log_history": [ { "epoch": 1.0, "learning_rate": 1.4999999999999999e-05, "loss": 8.5119, "step": 16 }, { "epoch": 1.0, "eval_accuracy": 0.0, "eval_average_metrics": 0.0, "eval_classification_report": "{\"0\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 39.0}, \"1\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 16.0}, \"2\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 14.0}, \"3\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 15.0}, \"4\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 11.0}, \"5\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 12.0}, \"6\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 9.0}, \"7\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 8.0}, \"8\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 126.0}}", "eval_f1_macro": 0.0, "eval_f1_micro": 0.0, "eval_f1_weighted": 0.0, "eval_loss": 9.79844856262207, "eval_runtime": 2.8936, "eval_samples_per_second": 43.544, "step": 16 }, { "epoch": 2.0, "learning_rate": 2.9999999999999997e-05, "loss": 8.3543, "step": 32 }, { "epoch": 2.0, "eval_accuracy": 0.0, "eval_average_metrics": 0.0, "eval_classification_report": "{\"0\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 39.0}, \"1\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 16.0}, \"2\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 14.0}, \"3\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 15.0}, \"4\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 11.0}, \"5\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 12.0}, \"6\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 9.0}, \"7\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 8.0}, \"8\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 126.0}}", "eval_f1_macro": 0.0, "eval_f1_micro": 0.0, "eval_f1_weighted": 0.0, "eval_loss": 9.300069808959961, "eval_runtime": 2.5305, "eval_samples_per_second": 49.792, "step": 32 }, { "epoch": 3.0, "learning_rate": 4.4999999999999996e-05, "loss": 7.7979, "step": 48 }, { "epoch": 3.0, "eval_accuracy": 0.0, "eval_average_metrics": 0.0, "eval_classification_report": "{\"0\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 39.0}, \"1\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 16.0}, \"2\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 14.0}, \"3\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 15.0}, \"4\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 11.0}, \"5\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 12.0}, \"6\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 9.0}, \"7\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 8.0}, \"8\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 126.0}}", "eval_f1_macro": 0.0, "eval_f1_micro": 0.0, "eval_f1_weighted": 0.0, "eval_loss": 8.209755897521973, "eval_runtime": 3.0142, "eval_samples_per_second": 41.802, "step": 48 }, { "epoch": 4.0, "learning_rate": 5.9999999999999995e-05, "loss": 6.9702, "step": 64 }, { "epoch": 4.0, "eval_accuracy": 0.0, "eval_average_metrics": 0.0, "eval_classification_report": "{\"0\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 39.0}, \"1\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 16.0}, \"2\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 14.0}, \"3\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 15.0}, \"4\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 11.0}, \"5\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 12.0}, \"6\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 9.0}, \"7\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 8.0}, \"8\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 126.0}}", "eval_f1_macro": 0.0, "eval_f1_micro": 0.0, "eval_f1_weighted": 0.0, "eval_loss": 6.342706203460693, "eval_runtime": 3.3351, "eval_samples_per_second": 37.779, "step": 64 }, { "epoch": 5.0, "learning_rate": 7.5e-05, "loss": 5.3156, "step": 80 }, { "epoch": 5.0, "eval_accuracy": 0.7936507936507936, "eval_average_metrics": 2.7085156022163894, "eval_classification_report": "{\"0\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 39.0}, \"1\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 16.0}, \"2\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 14.0}, \"3\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 15.0}, \"4\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 11.0}, \"5\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 12.0}, \"6\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 9.0}, \"7\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 2.0}, \"micro avg\": {\"precision\": 1.0, \"recall\": 0.007936507936507936, \"f1-score\": 0.015748031496062992, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.1111111111111111, \"recall\": 0.05555555555555555, \"f1-score\": 0.07407407407407407, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.015873015873015872, \"recall\": 0.007936507936507936, \"f1-score\": 0.010582010582010581, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.007936507936507936, \"recall\": 0.007936507936507936, \"f1-score\": 0.007936507936507936, \"support\": 126.0}}", "eval_f1_macro": 7.4074074074074066, "eval_f1_micro": 1.574803149606299, "eval_f1_weighted": 1.0582010582010581, "eval_loss": 3.937730312347412, "eval_runtime": 2.7263, "eval_samples_per_second": 46.216, "step": 80 }, { "epoch": 6.0, "learning_rate": 8.999999999999999e-05, "loss": 3.026, "step": 96 }, { "epoch": 6.0, "eval_accuracy": 1.5873015873015872, "eval_average_metrics": 2.3386119531252807, "eval_classification_report": "{\"0\": {\"precision\": 0.5, \"recall\": 0.02564102564102564, \"f1-score\": 0.048780487804878044, \"support\": 39.0}, \"1\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 16.0}, \"2\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 14.0}, \"3\": {\"precision\": 0.5, \"recall\": 0.06666666666666667, \"f1-score\": 0.11764705882352941, \"support\": 15.0}, \"4\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 11.0}, \"5\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 12.0}, \"6\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 9.0}, \"7\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 8.0}, \"8\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.2857142857142857, \"recall\": 0.015873015873015872, \"f1-score\": 0.03007518796992481, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.1111111111111111, \"recall\": 0.010256410256410256, \"f1-score\": 0.018491949625378604, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.21428571428571427, \"recall\": 0.015873015873015872, \"f1-score\": 0.029104324656691945, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.015873015873015872, \"recall\": 0.015873015873015872, \"f1-score\": 0.015873015873015872, \"support\": 126.0}}", "eval_f1_macro": 1.8491949625378603, "eval_f1_micro": 3.007518796992481, "eval_f1_weighted": 2.9104324656691944, "eval_loss": 2.086115598678589, "eval_runtime": 2.0859, "eval_samples_per_second": 60.407, "step": 96 }, { "epoch": 7.0, "learning_rate": 0.00010499999999999999, "loss": 1.627, "step": 112 }, { "epoch": 7.0, "eval_accuracy": 30.158730158730158, "eval_average_metrics": 24.942293455348874, "eval_classification_report": "{\"0\": {\"precision\": 0.43103448275862066, \"recall\": 0.6410256410256411, \"f1-score\": 0.5154639175257731, \"support\": 39.0}, \"1\": {\"precision\": 0.16279069767441862, \"recall\": 0.4375, \"f1-score\": 0.23728813559322032, \"support\": 16.0}, \"2\": {\"precision\": 0.4, \"recall\": 0.14285714285714285, \"f1-score\": 0.21052631578947364, \"support\": 14.0}, \"3\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 15.0}, \"4\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 11.0}, \"5\": {\"precision\": 0.1111111111111111, \"recall\": 0.08333333333333333, \"f1-score\": 0.09523809523809525, \"support\": 12.0}, \"6\": {\"precision\": 0.2727272727272727, \"recall\": 0.3333333333333333, \"f1-score\": 0.3, \"support\": 9.0}, \"7\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 8.0}, \"8\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.30158730158730157, \"recall\": 0.30158730158730157, \"f1-score\": 0.30158730158730157, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.15307372936349145, \"recall\": 0.18200549450549447, \"f1-score\": 0.15094627379406247, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.22859424427187058, \"recall\": 0.30158730158730157, \"f1-score\": 0.2435708612452893, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.30158730158730157, \"recall\": 0.30158730158730157, \"f1-score\": 0.30158730158730157, \"support\": 126.0}}", "eval_f1_macro": 15.094627379406248, "eval_f1_micro": 30.158730158730158, "eval_f1_weighted": 24.35708612452893, "eval_loss": 1.0193202495574951, "eval_runtime": 2.7096, "eval_samples_per_second": 46.501, "step": 112 }, { "epoch": 8.0, "learning_rate": 0.00011999999999999999, "loss": 1.0339, "step": 128 }, { "epoch": 8.0, "eval_accuracy": 34.12698412698413, "eval_average_metrics": 31.724036748316195, "eval_classification_report": "{\"0\": {\"precision\": 0.4444444444444444, \"recall\": 0.5128205128205128, \"f1-score\": 0.47619047619047616, \"support\": 39.0}, \"1\": {\"precision\": 0.16666666666666666, \"recall\": 0.625, \"f1-score\": 0.2631578947368421, \"support\": 16.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.14285714285714285, \"f1-score\": 0.22222222222222224, \"support\": 14.0}, \"3\": {\"precision\": 0.42857142857142855, \"recall\": 0.2, \"f1-score\": 0.27272727272727276, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.45454545454545453, \"f1-score\": 0.625, \"support\": 11.0}, \"5\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 12.0}, \"6\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 9.0}, \"7\": {\"precision\": 0.75, \"recall\": 0.375, \"f1-score\": 0.5, \"support\": 8.0}, \"8\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.3412698412698413, \"recall\": 0.3412698412698413, \"f1-score\": 0.3412698412698413, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.3655202821869488, \"recall\": 0.2566914566914567, \"f1-score\": 0.26214420731964594, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.40022675736961455, \"recall\": 0.3412698412698413, \"f1-score\": 0.32427758007331936, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.3412698412698413, \"recall\": 0.3412698412698413, \"f1-score\": 0.3412698412698413, \"support\": 126.0}}", "eval_f1_macro": 26.214420731964594, "eval_f1_micro": 34.12698412698413, "eval_f1_weighted": 32.42775800733194, "eval_loss": 0.8184757828712463, "eval_runtime": 2.5927, "eval_samples_per_second": 48.598, "step": 128 }, { "epoch": 9.0, "learning_rate": 0.000135, "loss": 0.8584, "step": 144 }, { "epoch": 9.0, "eval_accuracy": 35.714285714285715, "eval_average_metrics": 37.625402133633294, "eval_classification_report": "{\"0\": {\"precision\": 0.6111111111111112, \"recall\": 0.28205128205128205, \"f1-score\": 0.38596491228070173, \"support\": 39.0}, \"1\": {\"precision\": 0.16666666666666666, \"recall\": 0.6875, \"f1-score\": 0.2682926829268293, \"support\": 16.0}, \"2\": {\"precision\": 0.3333333333333333, \"recall\": 0.07142857142857142, \"f1-score\": 0.11764705882352941, \"support\": 14.0}, \"3\": {\"precision\": 0.5, \"recall\": 0.26666666666666666, \"f1-score\": 0.3478260869565218, \"support\": 15.0}, \"4\": {\"precision\": 0.6428571428571429, \"recall\": 0.8181818181818182, \"f1-score\": 0.7200000000000001, \"support\": 11.0}, \"5\": {\"precision\": 0.16666666666666666, \"recall\": 0.08333333333333333, \"f1-score\": 0.1111111111111111, \"support\": 12.0}, \"6\": {\"precision\": 0.6, \"recall\": 0.3333333333333333, \"f1-score\": 0.42857142857142855, \"support\": 9.0}, \"7\": {\"precision\": 0.75, \"recall\": 0.375, \"f1-score\": 0.5, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.35714285714285715, \"recall\": 0.35714285714285715, \"f1-score\": 0.35714285714285715, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.5300705467372134, \"recall\": 0.4352772227772228, \"f1-score\": 0.43104592007445797, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.485222978080121, \"recall\": 0.35714285714285715, \"f1-score\": 0.3596844509851593, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.35714285714285715, \"recall\": 0.35714285714285715, \"f1-score\": 0.35714285714285715, \"support\": 126.0}}", "eval_f1_macro": 43.104592007445795, "eval_f1_micro": 35.714285714285715, "eval_f1_weighted": 35.96844509851593, "eval_loss": 0.7439054250717163, "eval_runtime": 2.7201, "eval_samples_per_second": 46.321, "step": 144 }, { "epoch": 10.0, "learning_rate": 0.00015, "loss": 0.7636, "step": 160 }, { "epoch": 10.0, "eval_accuracy": 47.61904761904761, "eval_average_metrics": 48.86900136900136, "eval_classification_report": "{\"0\": {\"precision\": 0.5641025641025641, \"recall\": 0.5641025641025641, \"f1-score\": 0.5641025641025641, \"support\": 39.0}, \"1\": {\"precision\": 0.27586206896551724, \"recall\": 0.5, \"f1-score\": 0.35555555555555557, \"support\": 16.0}, \"2\": {\"precision\": 1.0, \"recall\": 0.07142857142857142, \"f1-score\": 0.13333333333333333, \"support\": 14.0}, \"3\": {\"precision\": 0.7142857142857143, \"recall\": 0.3333333333333333, \"f1-score\": 0.4545454545454545, \"support\": 15.0}, \"4\": {\"precision\": 0.8888888888888888, \"recall\": 0.7272727272727273, \"f1-score\": 0.7999999999999999, \"support\": 11.0}, \"5\": {\"precision\": 0.23333333333333334, \"recall\": 0.5833333333333334, \"f1-score\": 0.33333333333333337, \"support\": 12.0}, \"6\": {\"precision\": 0.75, \"recall\": 0.3333333333333333, \"f1-score\": 0.46153846153846156, \"support\": 9.0}, \"7\": {\"precision\": 0.8, \"recall\": 0.5, \"f1-score\": 0.6153846153846154, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.47619047619047616, \"recall\": 0.47619047619047616, \"f1-score\": 0.47619047619047616, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.6918302855084464, \"recall\": 0.5125337625337625, \"f1-score\": 0.5241992575325908, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6258401317104109, \"recall\": 0.47619047619047616, \"f1-score\": 0.4781798448465115, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.47619047619047616, \"recall\": 0.47619047619047616, \"f1-score\": 0.47619047619047616, \"support\": 126.0}}", "eval_f1_macro": 52.41992575325908, "eval_f1_micro": 47.61904761904761, "eval_f1_weighted": 47.81798448465115, "eval_loss": 0.6649571657180786, "eval_runtime": 2.0753, "eval_samples_per_second": 60.714, "step": 160 }, { "epoch": 11.0, "learning_rate": 0.000165, "loss": 0.7132, "step": 176 }, { "epoch": 11.0, "eval_accuracy": 59.523809523809526, "eval_average_metrics": 60.19962586143664, "eval_classification_report": "{\"0\": {\"precision\": 0.6078431372549019, \"recall\": 0.7948717948717948, \"f1-score\": 0.6888888888888889, \"support\": 39.0}, \"1\": {\"precision\": 0.4166666666666667, \"recall\": 0.3125, \"f1-score\": 0.35714285714285715, \"support\": 16.0}, \"2\": {\"precision\": 0.34782608695652173, \"recall\": 0.5714285714285714, \"f1-score\": 0.4324324324324324, \"support\": 14.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.4, \"f1-score\": 0.5714285714285715, \"support\": 15.0}, \"4\": {\"precision\": 0.875, \"recall\": 0.6363636363636364, \"f1-score\": 0.7368421052631579, \"support\": 11.0}, \"5\": {\"precision\": 0.5833333333333334, \"recall\": 0.5833333333333334, \"f1-score\": 0.5833333333333334, \"support\": 12.0}, \"6\": {\"precision\": 0.7142857142857143, \"recall\": 0.5555555555555556, \"f1-score\": 0.6250000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.8, \"recall\": 0.5, \"f1-score\": 0.6153846153846154, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.5952380952380952, \"recall\": 0.5952380952380952, \"f1-score\": 0.5952380952380952, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7049949931663486, \"recall\": 0.5948947657280991, \"f1-score\": 0.623383644874873, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6483784576632585, \"recall\": 0.5952380952380952, \"f1-score\": 0.594125199106402, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.5952380952380952, \"recall\": 0.5952380952380952, \"f1-score\": 0.5952380952380952, \"support\": 126.0}}", "eval_f1_macro": 62.3383644874873, "eval_f1_micro": 59.523809523809526, "eval_f1_weighted": 59.412519910640206, "eval_loss": 0.6241121292114258, "eval_runtime": 1.7604, "eval_samples_per_second": 71.575, "step": 176 }, { "epoch": 12.0, "learning_rate": 0.00017999999999999998, "loss": 0.6892, "step": 192 }, { "epoch": 12.0, "eval_accuracy": 56.34920634920635, "eval_average_metrics": 53.5857701347006, "eval_classification_report": "{\"0\": {\"precision\": 0.5357142857142857, \"recall\": 0.7692307692307693, \"f1-score\": 0.6315789473684211, \"support\": 39.0}, \"1\": {\"precision\": 0.5, \"recall\": 0.0625, \"f1-score\": 0.1111111111111111, \"support\": 16.0}, \"2\": {\"precision\": 0.3793103448275862, \"recall\": 0.7857142857142857, \"f1-score\": 0.5116279069767441, \"support\": 14.0}, \"3\": {\"precision\": 0.8666666666666667, \"recall\": 0.8666666666666667, \"f1-score\": 0.8666666666666667, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.1111111111111111, \"f1-score\": 0.19999999999999998, \"support\": 9.0}, \"7\": {\"precision\": 0.4, \"recall\": 0.5, \"f1-score\": 0.4444444444444445, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.5634920634920635, \"recall\": 0.5634920634920635, \"f1-score\": 0.5634920634920635, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.6201879219120597, \"recall\": 0.5459338501005168, \"f1-score\": 0.5136191037455827, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.565898428336852, \"recall\": 0.5634920634920635, \"f1-score\": 0.5028275746583143, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.5634920634920635, \"recall\": 0.5634920634920635, \"f1-score\": 0.5634920634920635, \"support\": 126.0}}", "eval_f1_macro": 51.36191037455827, "eval_f1_micro": 56.34920634920635, "eval_f1_weighted": 50.28275746583143, "eval_loss": 0.6285279393196106, "eval_runtime": 2.1072, "eval_samples_per_second": 59.794, "step": 192 }, { "epoch": 13.0, "learning_rate": 0.000195, "loss": 0.6669, "step": 208 }, { "epoch": 13.0, "eval_accuracy": 63.49206349206349, "eval_average_metrics": 64.10769342224819, "eval_classification_report": "{\"0\": {\"precision\": 0.6346153846153846, \"recall\": 0.8461538461538461, \"f1-score\": 0.7252747252747251, \"support\": 39.0}, \"1\": {\"precision\": 0.3333333333333333, \"recall\": 0.375, \"f1-score\": 0.35294117647058826, \"support\": 16.0}, \"2\": {\"precision\": 0.46153846153846156, \"recall\": 0.42857142857142855, \"f1-score\": 0.4444444444444445, \"support\": 14.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.6, \"f1-score\": 0.7499999999999999, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.8333333333333334, \"recall\": 0.4166666666666667, \"f1-score\": 0.5555555555555556, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.5555555555555556, \"f1-score\": 0.7142857142857143, \"support\": 9.0}, \"7\": {\"precision\": 0.45454545454545453, \"recall\": 0.625, \"f1-score\": 0.5263157894736842, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6349206349206349, \"recall\": 0.6349206349206349, \"f1-score\": 0.6349206349206349, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7352628852628853, \"recall\": 0.6294588127921461, \"f1-score\": 0.6584400291830632, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6831844081844082, \"recall\": 0.6349206349206349, \"f1-score\": 0.6360264378655945, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6349206349206349, \"recall\": 0.6349206349206349, \"f1-score\": 0.6349206349206349, \"support\": 126.0}}", "eval_f1_macro": 65.84400291830632, "eval_f1_micro": 63.49206349206349, "eval_f1_weighted": 63.602643786559454, "eval_loss": 0.5831777453422546, "eval_runtime": 2.2024, "eval_samples_per_second": 57.211, "step": 208 }, { "epoch": 14.0, "learning_rate": 0.00020999999999999998, "loss": 0.6442, "step": 224 }, { "epoch": 14.0, "eval_accuracy": 60.317460317460316, "eval_average_metrics": 59.99739973387685, "eval_classification_report": "{\"0\": {\"precision\": 0.53125, \"recall\": 0.8717948717948718, \"f1-score\": 0.6601941747572816, \"support\": 39.0}, \"1\": {\"precision\": 0.375, \"recall\": 0.375, \"f1-score\": 0.375, \"support\": 16.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.42857142857142855, \"f1-score\": 0.4615384615384615, \"support\": 14.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.7333333333333333, \"f1-score\": 0.846153846153846, \"support\": 15.0}, \"4\": {\"precision\": 0.8888888888888888, \"recall\": 0.7272727272727273, \"f1-score\": 0.7999999999999999, \"support\": 11.0}, \"5\": {\"precision\": 0.75, \"recall\": 0.25, \"f1-score\": 0.375, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.2222222222222222, \"f1-score\": 0.3636363636363636, \"support\": 9.0}, \"7\": {\"precision\": 0.6666666666666666, \"recall\": 0.5, \"f1-score\": 0.5714285714285715, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6031746031746031, \"recall\": 0.6031746031746031, \"f1-score\": 0.6031746031746031, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7457561728395061, \"recall\": 0.5675771759105093, \"f1-score\": 0.6058834908349472, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6653163580246914, \"recall\": 0.6031746031746031, \"f1-score\": 0.5876632921709205, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6031746031746031, \"recall\": 0.6031746031746031, \"f1-score\": 0.6031746031746031, \"support\": 126.0}}", "eval_f1_macro": 60.58834908349472, "eval_f1_micro": 60.317460317460316, "eval_f1_weighted": 58.76632921709205, "eval_loss": 0.5776044130325317, "eval_runtime": 2.4101, "eval_samples_per_second": 52.28, "step": 224 }, { "epoch": 15.0, "learning_rate": 0.000225, "loss": 0.6071, "step": 240 }, { "epoch": 15.0, "eval_accuracy": 63.49206349206349, "eval_average_metrics": 64.3897325668159, "eval_classification_report": "{\"0\": {\"precision\": 0.5789473684210527, \"recall\": 0.8461538461538461, \"f1-score\": 0.6875, \"support\": 39.0}, \"1\": {\"precision\": 0.3684210526315789, \"recall\": 0.4375, \"f1-score\": 0.39999999999999997, \"support\": 16.0}, \"2\": {\"precision\": 0.46153846153846156, \"recall\": 0.42857142857142855, \"f1-score\": 0.4444444444444445, \"support\": 14.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.6, \"f1-score\": 0.7499999999999999, \"support\": 15.0}, \"4\": {\"precision\": 0.8888888888888888, \"recall\": 0.7272727272727273, \"f1-score\": 0.7999999999999999, \"support\": 11.0}, \"5\": {\"precision\": 0.875, \"recall\": 0.5833333333333334, \"f1-score\": 0.7000000000000001, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.4444444444444444, \"f1-score\": 0.6153846153846153, \"support\": 9.0}, \"7\": {\"precision\": 0.8, \"recall\": 0.5, \"f1-score\": 0.6153846153846154, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6349206349206349, \"recall\": 0.6349206349206349, \"f1-score\": 0.6349206349206349, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7747550857199981, \"recall\": 0.6185861977528645, \"f1-score\": 0.6680792972459639, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6953412734114489, \"recall\": 0.6349206349206349, \"f1-score\": 0.6376687355854022, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6349206349206349, \"recall\": 0.6349206349206349, \"f1-score\": 0.6349206349206349, \"support\": 126.0}}", "eval_f1_macro": 66.80792972459639, "eval_f1_micro": 63.49206349206349, "eval_f1_weighted": 63.76687355854022, "eval_loss": 0.5629297494888306, "eval_runtime": 2.0205, "eval_samples_per_second": 62.362, "step": 240 }, { "epoch": 16.0, "learning_rate": 0.00023999999999999998, "loss": 0.5868, "step": 256 }, { "epoch": 16.0, "eval_accuracy": 62.698412698412696, "eval_average_metrics": 63.696168450050436, "eval_classification_report": "{\"0\": {\"precision\": 0.7714285714285715, \"recall\": 0.6923076923076923, \"f1-score\": 0.7297297297297296, \"support\": 39.0}, \"1\": {\"precision\": 0.3333333333333333, \"recall\": 0.4375, \"f1-score\": 0.37837837837837834, \"support\": 16.0}, \"2\": {\"precision\": 0.36363636363636365, \"recall\": 0.2857142857142857, \"f1-score\": 0.32, \"support\": 14.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.5333333333333333, \"f1-score\": 0.6956521739130436, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.4444444444444444, \"recall\": 0.6666666666666666, \"f1-score\": 0.5333333333333333, \"support\": 12.0}, \"6\": {\"precision\": 0.6666666666666666, \"recall\": 0.8888888888888888, \"f1-score\": 0.761904761904762, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.626984126984127, \"recall\": 0.626984126984127, \"f1-score\": 0.626984126984127, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.6792889209555876, \"recall\": 0.6709446417779751, \"f1-score\": 0.6614543651500173, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6654229368515082, \"recall\": 0.626984126984127, \"f1-score\": 0.6324241188837462, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.626984126984127, \"recall\": 0.626984126984127, \"f1-score\": 0.626984126984127, \"support\": 126.0}}", "eval_f1_macro": 66.14543651500173, "eval_f1_micro": 62.698412698412696, "eval_f1_weighted": 63.24241188837462, "eval_loss": 0.5499978065490723, "eval_runtime": 2.4351, "eval_samples_per_second": 51.744, "step": 256 }, { "epoch": 17.0, "learning_rate": 0.00025499999999999996, "loss": 0.5543, "step": 272 }, { "epoch": 17.0, "eval_accuracy": 62.698412698412696, "eval_average_metrics": 63.865351820331185, "eval_classification_report": "{\"0\": {\"precision\": 0.7837837837837838, \"recall\": 0.7435897435897436, \"f1-score\": 0.7631578947368421, \"support\": 39.0}, \"1\": {\"precision\": 0.3125, \"recall\": 0.3125, \"f1-score\": 0.3125, \"support\": 16.0}, \"2\": {\"precision\": 0.36363636363636365, \"recall\": 0.2857142857142857, \"f1-score\": 0.32, \"support\": 14.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.6, \"f1-score\": 0.7499999999999999, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.3333333333333333, \"recall\": 0.6666666666666666, \"f1-score\": 0.4444444444444444, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.5555555555555556, \"recall\": 0.625, \"f1-score\": 0.5882352941176471, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.626984126984127, \"recall\": 0.626984126984127, \"f1-score\": 0.626984126984127, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.6953222161555495, \"recall\": 0.6578154869821536, \"f1-score\": 0.6624920602655381, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6754200087533421, \"recall\": 0.626984126984127, \"f1-score\": 0.6381537585794551, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.626984126984127, \"recall\": 0.626984126984127, \"f1-score\": 0.626984126984127, \"support\": 126.0}}", "eval_f1_macro": 66.24920602655381, "eval_f1_micro": 62.698412698412696, "eval_f1_weighted": 63.81537585794551, "eval_loss": 0.5474956035614014, "eval_runtime": 2.6906, "eval_samples_per_second": 46.83, "step": 272 }, { "epoch": 18.0, "learning_rate": 0.00027, "loss": 0.5299, "step": 288 }, { "epoch": 18.0, "eval_accuracy": 70.63492063492063, "eval_average_metrics": 71.7359937670623, "eval_classification_report": "{\"0\": {\"precision\": 0.7948717948717948, \"recall\": 0.7948717948717948, \"f1-score\": 0.7948717948717948, \"support\": 39.0}, \"1\": {\"precision\": 0.36, \"recall\": 0.5625, \"f1-score\": 0.43902439024390244, \"support\": 16.0}, \"2\": {\"precision\": 0.4166666666666667, \"recall\": 0.35714285714285715, \"f1-score\": 0.3846153846153846, \"support\": 14.0}, \"3\": {\"precision\": 0.8461538461538461, \"recall\": 0.7333333333333333, \"f1-score\": 0.7857142857142856, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.6666666666666666, \"f1-score\": 0.761904761904762, \"support\": 12.0}, \"6\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"7\": {\"precision\": 0.8333333333333334, \"recall\": 0.625, \"f1-score\": 0.7142857142857143, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.7063492063492064, \"recall\": 0.7063492063492064, \"f1-score\": 0.7063492063492064, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7708771475438143, \"recall\": 0.7263882722216055, \"f1-score\": 0.742044014401738, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.735071225071225, \"recall\": 0.7063492063492064, \"f1-score\": 0.7146973235823411, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.7063492063492064, \"recall\": 0.7063492063492064, \"f1-score\": 0.7063492063492064, \"support\": 126.0}}", "eval_f1_macro": 74.2044014401738, "eval_f1_micro": 70.63492063492063, "eval_f1_weighted": 71.46973235823411, "eval_loss": 0.5406908988952637, "eval_runtime": 2.4521, "eval_samples_per_second": 51.385, "step": 288 }, { "epoch": 19.0, "learning_rate": 0.000285, "loss": 0.5163, "step": 304 }, { "epoch": 19.0, "eval_accuracy": 62.698412698412696, "eval_average_metrics": 63.675759670133445, "eval_classification_report": "{\"0\": {\"precision\": 0.7352941176470589, \"recall\": 0.6410256410256411, \"f1-score\": 0.6849315068493151, \"support\": 39.0}, \"1\": {\"precision\": 0.3, \"recall\": 0.75, \"f1-score\": 0.4285714285714285, \"support\": 16.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.07142857142857142, \"f1-score\": 0.125, \"support\": 14.0}, \"3\": {\"precision\": 0.7692307692307693, \"recall\": 0.6666666666666666, \"f1-score\": 0.7142857142857142, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.6666666666666666, \"f1-score\": 0.7272727272727272, \"support\": 12.0}, \"6\": {\"precision\": 0.8571428571428571, \"recall\": 0.6666666666666666, \"f1-score\": 0.75, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.626984126984127, \"recall\": 0.626984126984127, \"f1-score\": 0.626984126984127, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7316715963774787, \"recall\": 0.6662827912827913, \"f1-score\": 0.6673132169707512, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6908214567878433, \"recall\": 0.626984126984127, \"f1-score\": 0.6257489158663326, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.626984126984127, \"recall\": 0.626984126984127, \"f1-score\": 0.626984126984127, \"support\": 126.0}}", "eval_f1_macro": 66.73132169707512, "eval_f1_micro": 62.698412698412696, "eval_f1_weighted": 62.574891586633264, "eval_loss": 0.5421800017356873, "eval_runtime": 2.2624, "eval_samples_per_second": 55.694, "step": 304 }, { "epoch": 20.0, "learning_rate": 0.0003, "loss": 0.4896, "step": 320 }, { "epoch": 20.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 66.17967645216473, "eval_classification_report": "{\"0\": {\"precision\": 0.6078431372549019, \"recall\": 0.7948717948717948, \"f1-score\": 0.6888888888888889, \"support\": 39.0}, \"1\": {\"precision\": 0.38095238095238093, \"recall\": 0.5, \"f1-score\": 0.4324324324324324, \"support\": 16.0}, \"2\": {\"precision\": 0.0, \"recall\": 0.0, \"f1-score\": 0.0, \"support\": 14.0}, \"3\": {\"precision\": 0.8461538461538461, \"recall\": 0.7333333333333333, \"f1-score\": 0.7857142857142856, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.9090909090909091, \"f1-score\": 0.9523809523809523, \"support\": 11.0}, \"5\": {\"precision\": 0.8181818181818182, \"recall\": 0.75, \"f1-score\": 0.7826086956521738, \"support\": 12.0}, \"6\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.6753479091714385, \"recall\": 0.6890205473538806, \"f1-score\": 0.6787922798029586, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6151715076084823, \"recall\": 0.6666666666666666, \"f1-score\": 0.6350614449502975, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 67.87922798029587, "eval_f1_micro": 66.66666666666666, "eval_f1_weighted": 63.50614449502975, "eval_loss": 0.5416666269302368, "eval_runtime": 1.8353, "eval_samples_per_second": 68.654, "step": 320 }, { "epoch": 21.0, "learning_rate": 0.00029833333333333334, "loss": 0.4725, "step": 336 }, { "epoch": 21.0, "eval_accuracy": 69.04761904761905, "eval_average_metrics": 69.57190082435841, "eval_classification_report": "{\"0\": {\"precision\": 0.6808510638297872, \"recall\": 0.8205128205128205, \"f1-score\": 0.7441860465116279, \"support\": 39.0}, \"1\": {\"precision\": 0.375, \"recall\": 0.375, \"f1-score\": 0.375, \"support\": 16.0}, \"2\": {\"precision\": 0.625, \"recall\": 0.35714285714285715, \"f1-score\": 0.45454545454545453, \"support\": 14.0}, \"3\": {\"precision\": 0.8333333333333334, \"recall\": 0.6666666666666666, \"f1-score\": 0.7407407407407408, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.8181818181818182, \"recall\": 0.75, \"f1-score\": 0.7826086956521738, \"support\": 12.0}, \"6\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"7\": {\"precision\": 0.5, \"recall\": 0.625, \"f1-score\": 0.5555555555555556, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6904761904761905, \"recall\": 0.6904761904761905, \"f1-score\": 0.6904761904761905, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7367051125916374, \"recall\": 0.7102557935891269, \"f1-score\": 0.7167351434428167, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6954077246630438, \"recall\": 0.6904761904761905, \"f1-score\": 0.6851885085791388, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6904761904761905, \"recall\": 0.6904761904761905, \"f1-score\": 0.6904761904761905, \"support\": 126.0}}", "eval_f1_macro": 71.67351434428167, "eval_f1_micro": 69.04761904761905, "eval_f1_weighted": 68.51885085791388, "eval_loss": 0.5432041883468628, "eval_runtime": 2.5799, "eval_samples_per_second": 48.838, "step": 336 }, { "epoch": 22.0, "learning_rate": 0.00029666666666666665, "loss": 0.4525, "step": 352 }, { "epoch": 22.0, "eval_accuracy": 67.46031746031747, "eval_average_metrics": 68.51705839801079, "eval_classification_report": "{\"0\": {\"precision\": 0.717948717948718, \"recall\": 0.717948717948718, \"f1-score\": 0.717948717948718, \"support\": 39.0}, \"1\": {\"precision\": 0.42857142857142855, \"recall\": 0.5625, \"f1-score\": 0.4864864864864864, \"support\": 16.0}, \"2\": {\"precision\": 0.46153846153846156, \"recall\": 0.42857142857142855, \"f1-score\": 0.4444444444444445, \"support\": 14.0}, \"3\": {\"precision\": 0.8181818181818182, \"recall\": 0.6, \"f1-score\": 0.6923076923076923, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.9090909090909091, \"f1-score\": 0.9523809523809523, \"support\": 11.0}, \"5\": {\"precision\": 0.6, \"recall\": 0.75, \"f1-score\": 0.6666666666666665, \"support\": 12.0}, \"6\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"7\": {\"precision\": 0.6666666666666666, \"recall\": 0.5, \"f1-score\": 0.5714285714285715, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7313106646439979, \"recall\": 0.7063333271666605, \"f1-score\": 0.7133947133947134, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6914662057519201, \"recall\": 0.6746031746031746, \"f1-score\": 0.6780812733193686, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}}", "eval_f1_macro": 71.33947133947134, "eval_f1_micro": 67.46031746031747, "eval_f1_weighted": 67.80812733193686, "eval_loss": 0.48761358857154846, "eval_runtime": 2.3733, "eval_samples_per_second": 53.09, "step": 352 }, { "epoch": 23.0, "learning_rate": 0.00029499999999999996, "loss": 0.4142, "step": 368 }, { "epoch": 23.0, "eval_accuracy": 65.87301587301587, "eval_average_metrics": 68.15800213116853, "eval_classification_report": "{\"0\": {\"precision\": 0.8571428571428571, \"recall\": 0.6153846153846154, \"f1-score\": 0.7164179104477612, \"support\": 39.0}, \"1\": {\"precision\": 0.29411764705882354, \"recall\": 0.625, \"f1-score\": 0.4, \"support\": 16.0}, \"2\": {\"precision\": 0.38461538461538464, \"recall\": 0.35714285714285715, \"f1-score\": 0.3703703703703704, \"support\": 14.0}, \"3\": {\"precision\": 0.8181818181818182, \"recall\": 0.6, \"f1-score\": 0.6923076923076923, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.6666666666666666, \"f1-score\": 0.761904761904762, \"support\": 12.0}, \"6\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"7\": {\"precision\": 0.7777777777777778, \"recall\": 0.875, \"f1-score\": 0.823529411764706, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7576337968494831, \"recall\": 0.7263526596859929, \"f1-score\": 0.7291677716416767, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7355609946646361, \"recall\": 0.6587301587301587, \"f1-score\": 0.6796919961447464, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}}", "eval_f1_macro": 72.91677716416767, "eval_f1_micro": 65.87301587301587, "eval_f1_weighted": 67.96919961447465, "eval_loss": 0.5160861015319824, "eval_runtime": 2.486, "eval_samples_per_second": 50.684, "step": 368 }, { "epoch": 24.0, "learning_rate": 0.00029333333333333327, "loss": 0.4069, "step": 384 }, { "epoch": 24.0, "eval_accuracy": 71.42857142857143, "eval_average_metrics": 72.48878933628171, "eval_classification_report": "{\"0\": {\"precision\": 0.8333333333333334, \"recall\": 0.7692307692307693, \"f1-score\": 0.8, \"support\": 39.0}, \"1\": {\"precision\": 0.5625, \"recall\": 0.5625, \"f1-score\": 0.5625, \"support\": 16.0}, \"2\": {\"precision\": 0.375, \"recall\": 0.6428571428571429, \"f1-score\": 0.4736842105263159, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.7272727272727273, \"recall\": 0.6666666666666666, \"f1-score\": 0.6956521739130435, \"support\": 12.0}, \"6\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.7142857142857143, \"recall\": 0.7142857142857143, \"f1-score\": 0.7142857142857143, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7678190636523969, \"recall\": 0.7404704863038196, \"f1-score\": 0.746275872120647, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7515203050917336, \"recall\": 0.7142857142857143, \"f1-score\": 0.7247042727591927, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.7142857142857143, \"recall\": 0.7142857142857143, \"f1-score\": 0.7142857142857143, \"support\": 126.0}}", "eval_f1_macro": 74.62758721206471, "eval_f1_micro": 71.42857142857143, "eval_f1_weighted": 72.47042727591926, "eval_loss": 0.5102534890174866, "eval_runtime": 2.0056, "eval_samples_per_second": 62.825, "step": 384 }, { "epoch": 25.0, "learning_rate": 0.00029166666666666664, "loss": 0.3896, "step": 400 }, { "epoch": 25.0, "eval_accuracy": 65.07936507936508, "eval_average_metrics": 67.2299517120489, "eval_classification_report": "{\"0\": {\"precision\": 0.8275862068965517, \"recall\": 0.6153846153846154, \"f1-score\": 0.7058823529411765, \"support\": 39.0}, \"1\": {\"precision\": 0.35714285714285715, \"recall\": 0.625, \"f1-score\": 0.45454545454545453, \"support\": 16.0}, \"2\": {\"precision\": 0.34782608695652173, \"recall\": 0.5714285714285714, \"f1-score\": 0.4324324324324324, \"support\": 14.0}, \"3\": {\"precision\": 0.8181818181818182, \"recall\": 0.6, \"f1-score\": 0.6923076923076923, \"support\": 15.0}, \"4\": {\"precision\": 0.8333333333333334, \"recall\": 0.9090909090909091, \"f1-score\": 0.8695652173913043, \"support\": 11.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.6666666666666666, \"f1-score\": 0.8, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.6666666666666666, \"f1-score\": 0.8, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6507936507936508, \"recall\": 0.6507936507936508, \"f1-score\": 0.6507936507936508, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7664840018663107, \"recall\": 0.6976930476930476, \"f1-score\": 0.7134888684760807, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7382015290025571, \"recall\": 0.6507936507936508, \"f1-score\": 0.6741218984185737, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6507936507936508, \"recall\": 0.6507936507936508, \"f1-score\": 0.6507936507936508, \"support\": 126.0}}", "eval_f1_macro": 71.34888684760807, "eval_f1_micro": 65.07936507936508, "eval_f1_weighted": 67.41218984185737, "eval_loss": 0.5465224385261536, "eval_runtime": 2.5932, "eval_samples_per_second": 48.589, "step": 400 }, { "epoch": 26.0, "learning_rate": 0.00029, "loss": 0.3684, "step": 416 }, { "epoch": 26.0, "eval_accuracy": 70.63492063492063, "eval_average_metrics": 72.63851893170286, "eval_classification_report": "{\"0\": {\"precision\": 0.8387096774193549, \"recall\": 0.6666666666666666, \"f1-score\": 0.7428571428571428, \"support\": 39.0}, \"1\": {\"precision\": 0.38461538461538464, \"recall\": 0.625, \"f1-score\": 0.4761904761904762, \"support\": 16.0}, \"2\": {\"precision\": 0.42105263157894735, \"recall\": 0.5714285714285714, \"f1-score\": 0.48484848484848486, \"support\": 14.0}, \"3\": {\"precision\": 0.8333333333333334, \"recall\": 0.6666666666666666, \"f1-score\": 0.7407407407407408, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.9090909090909091, \"f1-score\": 0.9523809523809523, \"support\": 11.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.6666666666666666, \"f1-score\": 0.761904761904762, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.8888888888888888, \"f1-score\": 0.9411764705882353, \"support\": 9.0}, \"7\": {\"precision\": 0.7777777777777778, \"recall\": 0.875, \"f1-score\": 0.823529411764706, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.7063492063492064, \"recall\": 0.7063492063492064, \"f1-score\": 0.7063492063492064, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7938197437348541, \"recall\": 0.7632675966009299, \"f1-score\": 0.7692920490306112, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7630726135253583, \"recall\": 0.7063492063492064, \"f1-score\": 0.7235502955390911, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.7063492063492064, \"recall\": 0.7063492063492064, \"f1-score\": 0.7063492063492064, \"support\": 126.0}}", "eval_f1_macro": 76.92920490306112, "eval_f1_micro": 70.63492063492063, "eval_f1_weighted": 72.3550295539091, "eval_loss": 0.5197439789772034, "eval_runtime": 2.1901, "eval_samples_per_second": 57.532, "step": 416 }, { "epoch": 27.0, "learning_rate": 0.0002883333333333333, "loss": 0.3434, "step": 432 }, { "epoch": 27.0, "eval_accuracy": 71.42857142857143, "eval_average_metrics": 72.66908374715257, "eval_classification_report": "{\"0\": {\"precision\": 0.7837837837837838, \"recall\": 0.7435897435897436, \"f1-score\": 0.7631578947368421, \"support\": 39.0}, \"1\": {\"precision\": 0.5263157894736842, \"recall\": 0.625, \"f1-score\": 0.5714285714285714, \"support\": 16.0}, \"2\": {\"precision\": 0.3888888888888889, \"recall\": 0.5, \"f1-score\": 0.43750000000000006, \"support\": 14.0}, \"3\": {\"precision\": 0.8, \"recall\": 0.8, \"f1-score\": 0.8000000000000002, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.7272727272727273, \"recall\": 0.6666666666666666, \"f1-score\": 0.6956521739130435, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.75, \"recall\": 0.75, \"f1-score\": 0.75, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.7142857142857143, \"recall\": 0.7142857142857143, \"f1-score\": 0.7142857142857143, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.775140132157676, \"recall\": 0.7423573340240007, \"f1-score\": 0.7547487377864953, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7393677569116166, \"recall\": 0.7142857142857143, \"f1-score\": 0.7234431835281786, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.7142857142857143, \"recall\": 0.7142857142857143, \"f1-score\": 0.7142857142857143, \"support\": 126.0}}", "eval_f1_macro": 75.47487377864954, "eval_f1_micro": 71.42857142857143, "eval_f1_weighted": 72.34431835281787, "eval_loss": 0.5265392065048218, "eval_runtime": 2.3956, "eval_samples_per_second": 52.597, "step": 432 }, { "epoch": 28.0, "learning_rate": 0.0002866666666666667, "loss": 0.3142, "step": 448 }, { "epoch": 28.0, "eval_accuracy": 73.80952380952381, "eval_average_metrics": 74.6564932359258, "eval_classification_report": "{\"0\": {\"precision\": 0.8571428571428571, \"recall\": 0.7692307692307693, \"f1-score\": 0.8108108108108107, \"support\": 39.0}, \"1\": {\"precision\": 0.5625, \"recall\": 0.5625, \"f1-score\": 0.5625, \"support\": 16.0}, \"2\": {\"precision\": 0.35294117647058826, \"recall\": 0.42857142857142855, \"f1-score\": 0.3870967741935484, \"support\": 14.0}, \"3\": {\"precision\": 0.7647058823529411, \"recall\": 0.8666666666666667, \"f1-score\": 0.8125, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.8181818181818182, \"recall\": 0.75, \"f1-score\": 0.7826086956521738, \"support\": 12.0}, \"6\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"7\": {\"precision\": 0.75, \"recall\": 0.75, \"f1-score\": 0.75, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.7380952380952381, \"recall\": 0.7380952380952381, \"f1-score\": 0.7380952380952381, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7670501702364447, \"recall\": 0.7694387402720735, \"f1-score\": 0.7670551198484813, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7512580789891715, \"recall\": 0.7380952380952381, \"f1-score\": 0.7430141333980744, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.7380952380952381, \"recall\": 0.7380952380952381, \"f1-score\": 0.7380952380952381, \"support\": 126.0}}", "eval_f1_macro": 76.70551198484813, "eval_f1_micro": 73.80952380952381, "eval_f1_weighted": 74.30141333980744, "eval_loss": 0.5168728828430176, "eval_runtime": 2.5598, "eval_samples_per_second": 49.222, "step": 448 }, { "epoch": 29.0, "learning_rate": 0.000285, "loss": 0.3163, "step": 464 }, { "epoch": 29.0, "eval_accuracy": 70.63492063492063, "eval_average_metrics": 71.4557315372864, "eval_classification_report": "{\"0\": {\"precision\": 0.7209302325581395, \"recall\": 0.7948717948717948, \"f1-score\": 0.7560975609756098, \"support\": 39.0}, \"1\": {\"precision\": 0.47619047619047616, \"recall\": 0.625, \"f1-score\": 0.5405405405405405, \"support\": 16.0}, \"2\": {\"precision\": 0.36363636363636365, \"recall\": 0.2857142857142857, \"f1-score\": 0.32, \"support\": 14.0}, \"3\": {\"precision\": 0.7647058823529411, \"recall\": 0.8666666666666667, \"f1-score\": 0.8125, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.875, \"recall\": 0.5833333333333334, \"f1-score\": 0.7000000000000001, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.75, \"recall\": 0.75, \"f1-score\": 0.75, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.7063492063492064, \"recall\": 0.7063492063492064, \"f1-score\": 0.7063492063492064, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7722736616375467, \"recall\": 0.7223939640606307, \"f1-score\": 0.7393486779462388, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7206097144049068, \"recall\": 0.7063492063492064, \"f1-score\": 0.7061821708468049, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.7063492063492064, \"recall\": 0.7063492063492064, \"f1-score\": 0.7063492063492064, \"support\": 126.0}}", "eval_f1_macro": 73.93486779462388, "eval_f1_micro": 70.63492063492063, "eval_f1_weighted": 70.6182170846805, "eval_loss": 0.5617404580116272, "eval_runtime": 2.2985, "eval_samples_per_second": 54.817, "step": 464 }, { "epoch": 30.0, "learning_rate": 0.0002833333333333333, "loss": 0.2882, "step": 480 }, { "epoch": 30.0, "eval_accuracy": 70.63492063492063, "eval_average_metrics": 72.10092548415378, "eval_classification_report": "{\"0\": {\"precision\": 0.7435897435897436, \"recall\": 0.7435897435897436, \"f1-score\": 0.7435897435897437, \"support\": 39.0}, \"1\": {\"precision\": 0.5555555555555556, \"recall\": 0.625, \"f1-score\": 0.5882352941176471, \"support\": 16.0}, \"2\": {\"precision\": 0.36363636363636365, \"recall\": 0.5714285714285714, \"f1-score\": 0.4444444444444444, \"support\": 14.0}, \"3\": {\"precision\": 0.8461538461538461, \"recall\": 0.7333333333333333, \"f1-score\": 0.7857142857142856, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.6666666666666666, \"f1-score\": 0.761904761904762, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.7063492063492064, \"recall\": 0.7063492063492064, \"f1-score\": 0.7063492063492064, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7902344569011236, \"recall\": 0.7289975456642124, \"f1-score\": 0.7517283551597278, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.746452841690937, \"recall\": 0.7063492063492064, \"f1-score\": 0.7196102515080106, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.7063492063492064, \"recall\": 0.7063492063492064, \"f1-score\": 0.7063492063492064, \"support\": 126.0}}", "eval_f1_macro": 75.17283551597278, "eval_f1_micro": 70.63492063492063, "eval_f1_weighted": 71.96102515080106, "eval_loss": 0.57481449842453, "eval_runtime": 2.2752, "eval_samples_per_second": 55.38, "step": 480 }, { "epoch": 31.0, "learning_rate": 0.00028166666666666666, "loss": 0.3074, "step": 496 }, { "epoch": 31.0, "eval_accuracy": 72.22222222222221, "eval_average_metrics": 72.90585894851769, "eval_classification_report": "{\"0\": {\"precision\": 0.7333333333333333, \"recall\": 0.8461538461538461, \"f1-score\": 0.7857142857142856, \"support\": 39.0}, \"1\": {\"precision\": 0.5, \"recall\": 0.5, \"f1-score\": 0.5, \"support\": 16.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.5, \"f1-score\": 0.5, \"support\": 14.0}, \"3\": {\"precision\": 0.8333333333333334, \"recall\": 0.6666666666666666, \"f1-score\": 0.7407407407407408, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.9090909090909091, \"f1-score\": 0.9523809523809523, \"support\": 11.0}, \"5\": {\"precision\": 0.6923076923076923, \"recall\": 0.75, \"f1-score\": 0.7199999999999999, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.7222222222222222, \"recall\": 0.7222222222222222, \"f1-score\": 0.7222222222222222, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7748066748066749, \"recall\": 0.7305210221876889, \"f1-score\": 0.748944738389183, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7311268096982382, \"recall\": 0.7222222222222222, \"f1-score\": 0.7228451751070799, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.7222222222222222, \"recall\": 0.7222222222222222, \"f1-score\": 0.7222222222222222, \"support\": 126.0}}", "eval_f1_macro": 74.8944738389183, "eval_f1_micro": 72.22222222222221, "eval_f1_weighted": 72.28451751070799, "eval_loss": 0.5544640421867371, "eval_runtime": 2.3825, "eval_samples_per_second": 52.886, "step": 496 }, { "epoch": 32.0, "learning_rate": 0.00028, "loss": 0.2728, "step": 512 }, { "epoch": 32.0, "eval_accuracy": 64.28571428571429, "eval_average_metrics": 66.09956351895633, "eval_classification_report": "{\"0\": {\"precision\": 0.8214285714285714, \"recall\": 0.5897435897435898, \"f1-score\": 0.6865671641791046, \"support\": 39.0}, \"1\": {\"precision\": 0.3055555555555556, \"recall\": 0.6875, \"f1-score\": 0.42307692307692313, \"support\": 16.0}, \"2\": {\"precision\": 0.25, \"recall\": 0.14285714285714285, \"f1-score\": 0.18181818181818182, \"support\": 14.0}, \"3\": {\"precision\": 0.75, \"recall\": 0.6, \"f1-score\": 0.6666666666666665, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.8181818181818182, \"recall\": 0.75, \"f1-score\": 0.7826086956521738, \"support\": 12.0}, \"6\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"7\": {\"precision\": 0.7777777777777778, \"recall\": 0.875, \"f1-score\": 0.823529411764706, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7245470578803912, \"recall\": 0.7158978367311701, \"f1-score\": 0.7069163156819505, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6961508509127557, \"recall\": 0.6428571428571429, \"f1-score\": 0.6513519393620169, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}}", "eval_f1_macro": 70.69163156819505, "eval_f1_micro": 64.28571428571429, "eval_f1_weighted": 65.13519393620169, "eval_loss": 0.5669139623641968, "eval_runtime": 2.1003, "eval_samples_per_second": 59.993, "step": 512 }, { "epoch": 33.0, "learning_rate": 0.00027833333333333334, "loss": 0.2561, "step": 528 }, { "epoch": 33.0, "eval_accuracy": 68.25396825396825, "eval_average_metrics": 69.4671441542925, "eval_classification_report": "{\"0\": {\"precision\": 0.8333333333333334, \"recall\": 0.6410256410256411, \"f1-score\": 0.7246376811594204, \"support\": 39.0}, \"1\": {\"precision\": 0.4444444444444444, \"recall\": 0.5, \"f1-score\": 0.47058823529411764, \"support\": 16.0}, \"2\": {\"precision\": 0.4375, \"recall\": 0.5, \"f1-score\": 0.4666666666666667, \"support\": 14.0}, \"3\": {\"precision\": 0.7692307692307693, \"recall\": 0.6666666666666666, \"f1-score\": 0.7142857142857142, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.5882352941176471, \"recall\": 0.8333333333333334, \"f1-score\": 0.6896551724137931, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.6363636363636364, \"recall\": 0.875, \"f1-score\": 0.7368421052631579, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7214664873978599, \"recall\": 0.744766036432703, \"f1-score\": 0.7261439884376094, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7087246449991549, \"recall\": 0.6825396825396826, \"f1-score\": 0.6874624126547257, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}}", "eval_f1_macro": 72.61439884376094, "eval_f1_micro": 68.25396825396825, "eval_f1_weighted": 68.74624126547258, "eval_loss": 0.58527010679245, "eval_runtime": 2.3707, "eval_samples_per_second": 53.149, "step": 528 }, { "epoch": 34.0, "learning_rate": 0.00027666666666666665, "loss": 0.238, "step": 544 }, { "epoch": 34.0, "eval_accuracy": 71.42857142857143, "eval_average_metrics": 71.77718684042749, "eval_classification_report": "{\"0\": {\"precision\": 0.7380952380952381, \"recall\": 0.7948717948717948, \"f1-score\": 0.7654320987654322, \"support\": 39.0}, \"1\": {\"precision\": 0.7142857142857143, \"recall\": 0.3125, \"f1-score\": 0.43478260869565216, \"support\": 16.0}, \"2\": {\"precision\": 0.4375, \"recall\": 0.5, \"f1-score\": 0.4666666666666667, \"support\": 14.0}, \"3\": {\"precision\": 0.8, \"recall\": 0.8, \"f1-score\": 0.8000000000000002, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.6428571428571429, \"recall\": 0.75, \"f1-score\": 0.6923076923076924, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.6363636363636364, \"recall\": 0.875, \"f1-score\": 0.7368421052631579, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.7142857142857143, \"recall\": 0.7142857142857143, \"f1-score\": 0.7142857142857143, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7503547378547378, \"recall\": 0.7465822757489424, \"f1-score\": 0.736516832506024, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7223768295196867, \"recall\": 0.7142857142857143, \"f1-score\": 0.7059992125396471, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.7142857142857143, \"recall\": 0.7142857142857143, \"f1-score\": 0.7142857142857143, \"support\": 126.0}}", "eval_f1_macro": 73.65168325060239, "eval_f1_micro": 71.42857142857143, "eval_f1_weighted": 70.59992125396471, "eval_loss": 0.6158257722854614, "eval_runtime": 2.3315, "eval_samples_per_second": 54.043, "step": 544 }, { "epoch": 35.0, "learning_rate": 0.00027499999999999996, "loss": 0.2327, "step": 560 }, { "epoch": 35.0, "eval_accuracy": 68.25396825396825, "eval_average_metrics": 70.1348974451293, "eval_classification_report": "{\"0\": {\"precision\": 0.84375, \"recall\": 0.6923076923076923, \"f1-score\": 0.7605633802816902, \"support\": 39.0}, \"1\": {\"precision\": 0.3225806451612903, \"recall\": 0.625, \"f1-score\": 0.425531914893617, \"support\": 16.0}, \"2\": {\"precision\": 0.4166666666666667, \"recall\": 0.35714285714285715, \"f1-score\": 0.3846153846153846, \"support\": 14.0}, \"3\": {\"precision\": 0.75, \"recall\": 0.6, \"f1-score\": 0.6666666666666665, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.6666666666666666, \"f1-score\": 0.761904761904762, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.8888888888888888, \"f1-score\": 0.9411764705882353, \"support\": 9.0}, \"7\": {\"precision\": 0.7777777777777778, \"recall\": 0.875, \"f1-score\": 0.823529411764706, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.767639431953948, \"recall\": 0.7348996682330016, \"f1-score\": 0.7414532110895523, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7384108138476418, \"recall\": 0.6825396825396826, \"f1-score\": 0.6988633216362546, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}}", "eval_f1_macro": 74.14532110895523, "eval_f1_micro": 68.25396825396825, "eval_f1_weighted": 69.88633216362547, "eval_loss": 0.6101545095443726, "eval_runtime": 2.4201, "eval_samples_per_second": 52.063, "step": 560 }, { "epoch": 36.0, "learning_rate": 0.00027333333333333333, "loss": 0.2111, "step": 576 }, { "epoch": 36.0, "eval_accuracy": 69.84126984126983, "eval_average_metrics": 71.17285361916801, "eval_classification_report": "{\"0\": {\"precision\": 0.8055555555555556, \"recall\": 0.7435897435897436, \"f1-score\": 0.7733333333333334, \"support\": 39.0}, \"1\": {\"precision\": 0.43478260869565216, \"recall\": 0.625, \"f1-score\": 0.5128205128205128, \"support\": 16.0}, \"2\": {\"precision\": 0.42105263157894735, \"recall\": 0.5714285714285714, \"f1-score\": 0.48484848484848486, \"support\": 14.0}, \"3\": {\"precision\": 0.8888888888888888, \"recall\": 0.5333333333333333, \"f1-score\": 0.6666666666666667, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.8181818181818182, \"recall\": 0.75, \"f1-score\": 0.7826086956521738, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.6666666666666666, \"recall\": 0.75, \"f1-score\": 0.7058823529411765, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6984126984126984, \"recall\": 0.6984126984126984, \"f1-score\": 0.6984126984126984, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7705697966186142, \"recall\": 0.7299234715901383, \"f1-score\": 0.7398114337116896, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7432759820059591, \"recall\": 0.6984126984126984, \"f1-score\": 0.7102773142296344, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6984126984126984, \"recall\": 0.6984126984126984, \"f1-score\": 0.6984126984126984, \"support\": 126.0}}", "eval_f1_macro": 73.98114337116895, "eval_f1_micro": 69.84126984126983, "eval_f1_weighted": 71.02773142296344, "eval_loss": 0.6326006054878235, "eval_runtime": 2.4476, "eval_samples_per_second": 51.479, "step": 576 }, { "epoch": 37.0, "learning_rate": 0.00027166666666666664, "loss": 0.1985, "step": 592 }, { "epoch": 37.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 68.57000518741475, "eval_classification_report": "{\"0\": {\"precision\": 0.717948717948718, \"recall\": 0.717948717948718, \"f1-score\": 0.717948717948718, \"support\": 39.0}, \"1\": {\"precision\": 0.3333333333333333, \"recall\": 0.5625, \"f1-score\": 0.4186046511627907, \"support\": 16.0}, \"2\": {\"precision\": 0.38461538461538464, \"recall\": 0.35714285714285715, \"f1-score\": 0.3703703703703704, \"support\": 14.0}, \"3\": {\"precision\": 0.8181818181818182, \"recall\": 0.6, \"f1-score\": 0.6923076923076923, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.6666666666666666, \"f1-score\": 0.8, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.7, \"recall\": 0.875, \"f1-score\": 0.7777777777777777, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7726754726754728, \"recall\": 0.7083575375242042, \"f1-score\": 0.7280010232852611, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7189736189736191, \"recall\": 0.6666666666666666, \"f1-score\": 0.6814658508779956, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 72.80010232852611, "eval_f1_micro": 66.66666666666666, "eval_f1_weighted": 68.14658508779956, "eval_loss": 0.6720136404037476, "eval_runtime": 2.4294, "eval_samples_per_second": 51.864, "step": 592 }, { "epoch": 38.0, "learning_rate": 0.00027, "loss": 0.1883, "step": 608 }, { "epoch": 38.0, "eval_accuracy": 71.42857142857143, "eval_average_metrics": 72.10616798038863, "eval_classification_report": "{\"0\": {\"precision\": 0.7631578947368421, \"recall\": 0.7435897435897436, \"f1-score\": 0.7532467532467534, \"support\": 39.0}, \"1\": {\"precision\": 0.5333333333333333, \"recall\": 0.5, \"f1-score\": 0.5161290322580646, \"support\": 16.0}, \"2\": {\"precision\": 0.45454545454545453, \"recall\": 0.35714285714285715, \"f1-score\": 0.4, \"support\": 14.0}, \"3\": {\"precision\": 0.75, \"recall\": 0.8, \"f1-score\": 0.7741935483870969, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.625, \"recall\": 0.8333333333333334, \"f1-score\": 0.7142857142857143, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.7777777777777778, \"recall\": 0.875, \"f1-score\": 0.823529411764706, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.7142857142857143, \"recall\": 0.7142857142857143, \"f1-score\": 0.7142857142857143, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7431005966093686, \"recall\": 0.7551038467705135, \"f1-score\": 0.7460005311997722, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7103757921740378, \"recall\": 0.7142857142857143, \"f1-score\": 0.7096747594443448, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.7142857142857143, \"recall\": 0.7142857142857143, \"f1-score\": 0.7142857142857143, \"support\": 126.0}}", "eval_f1_macro": 74.60005311997722, "eval_f1_micro": 71.42857142857143, "eval_f1_weighted": 70.96747594443448, "eval_loss": 0.6791139245033264, "eval_runtime": 2.284, "eval_samples_per_second": 55.166, "step": 608 }, { "epoch": 39.0, "learning_rate": 0.0002683333333333333, "loss": 0.1929, "step": 624 }, { "epoch": 39.0, "eval_accuracy": 69.84126984126983, "eval_average_metrics": 70.67220349858721, "eval_classification_report": "{\"0\": {\"precision\": 0.75, \"recall\": 0.7692307692307693, \"f1-score\": 0.7594936708860761, \"support\": 39.0}, \"1\": {\"precision\": 0.43478260869565216, \"recall\": 0.625, \"f1-score\": 0.5128205128205128, \"support\": 16.0}, \"2\": {\"precision\": 0.5, \"recall\": 0.35714285714285715, \"f1-score\": 0.41666666666666663, \"support\": 14.0}, \"3\": {\"precision\": 0.8181818181818182, \"recall\": 0.6, \"f1-score\": 0.6923076923076923, \"support\": 15.0}, \"4\": {\"precision\": 0.8888888888888888, \"recall\": 0.7272727272727273, \"f1-score\": 0.7999999999999999, \"support\": 11.0}, \"5\": {\"precision\": 0.7692307692307693, \"recall\": 0.8333333333333334, \"f1-score\": 0.8, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.7777777777777778, \"recall\": 0.875, \"f1-score\": 0.823529411764706, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6984126984126984, \"recall\": 0.6984126984126984, \"f1-score\": 0.6984126984126984, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7462932933947427, \"recall\": 0.7294174960841627, \"f1-score\": 0.7313995258026035, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7119842717668805, \"recall\": 0.6984126984126984, \"f1-score\": 0.6986632173154884, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6984126984126984, \"recall\": 0.6984126984126984, \"f1-score\": 0.6984126984126984, \"support\": 126.0}}", "eval_f1_macro": 73.13995258026034, "eval_f1_micro": 69.84126984126983, "eval_f1_weighted": 69.86632173154884, "eval_loss": 0.6863805651664734, "eval_runtime": 2.2477, "eval_samples_per_second": 56.058, "step": 624 }, { "epoch": 40.0, "learning_rate": 0.0002666666666666666, "loss": 0.1708, "step": 640 }, { "epoch": 40.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 67.80182285896896, "eval_classification_report": "{\"0\": {\"precision\": 0.7631578947368421, \"recall\": 0.7435897435897436, \"f1-score\": 0.7532467532467534, \"support\": 39.0}, \"1\": {\"precision\": 0.37037037037037035, \"recall\": 0.625, \"f1-score\": 0.4651162790697674, \"support\": 16.0}, \"2\": {\"precision\": 0.36363636363636365, \"recall\": 0.2857142857142857, \"f1-score\": 0.32, \"support\": 14.0}, \"3\": {\"precision\": 0.8888888888888888, \"recall\": 0.5333333333333333, \"f1-score\": 0.6666666666666667, \"support\": 15.0}, \"4\": {\"precision\": 0.8888888888888888, \"recall\": 0.7272727272727273, \"f1-score\": 0.7999999999999999, \"support\": 11.0}, \"5\": {\"precision\": 0.75, \"recall\": 0.75, \"f1-score\": 0.75, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.7, \"recall\": 0.875, \"f1-score\": 0.7777777777777777, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7333269340579283, \"recall\": 0.7019653186319853, \"f1-score\": 0.7062596542806302, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7013182858943093, \"recall\": 0.6666666666666666, \"f1-score\": 0.6724799267447955, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 70.62596542806303, "eval_f1_micro": 66.66666666666666, "eval_f1_weighted": 67.24799267447955, "eval_loss": 0.7172627449035645, "eval_runtime": 1.9884, "eval_samples_per_second": 63.366, "step": 640 }, { "epoch": 41.0, "learning_rate": 0.000265, "loss": 0.1649, "step": 656 }, { "epoch": 41.0, "eval_accuracy": 67.46031746031747, "eval_average_metrics": 68.26693180403544, "eval_classification_report": "{\"0\": {\"precision\": 0.6888888888888889, \"recall\": 0.7948717948717948, \"f1-score\": 0.738095238095238, \"support\": 39.0}, \"1\": {\"precision\": 0.38095238095238093, \"recall\": 0.5, \"f1-score\": 0.4324324324324324, \"support\": 16.0}, \"2\": {\"precision\": 0.3333333333333333, \"recall\": 0.21428571428571427, \"f1-score\": 0.2608695652173913, \"support\": 14.0}, \"3\": {\"precision\": 0.8461538461538461, \"recall\": 0.7333333333333333, \"f1-score\": 0.7857142857142856, \"support\": 15.0}, \"4\": {\"precision\": 0.8888888888888888, \"recall\": 0.7272727272727273, \"f1-score\": 0.7999999999999999, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.6666666666666666, \"f1-score\": 0.8, \"support\": 9.0}, \"7\": {\"precision\": 0.6363636363636364, \"recall\": 0.875, \"f1-score\": 0.7368421052631579, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7416201082867749, \"recall\": 0.6957144707144707, \"f1-score\": 0.7080150494338137, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6903933808695714, \"recall\": 0.6746031746031746, \"f1-score\": 0.6734558735212544, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}}", "eval_f1_macro": 70.80150494338136, "eval_f1_micro": 67.46031746031747, "eval_f1_weighted": 67.34558735212543, "eval_loss": 0.7312914133071899, "eval_runtime": 2.1704, "eval_samples_per_second": 58.054, "step": 656 }, { "epoch": 42.0, "learning_rate": 0.0002633333333333333, "loss": 0.1473, "step": 672 }, { "epoch": 42.0, "eval_accuracy": 68.25396825396825, "eval_average_metrics": 69.28498438695806, "eval_classification_report": "{\"0\": {\"precision\": 0.7837837837837838, \"recall\": 0.7435897435897436, \"f1-score\": 0.7631578947368421, \"support\": 39.0}, \"1\": {\"precision\": 0.391304347826087, \"recall\": 0.5625, \"f1-score\": 0.46153846153846156, \"support\": 16.0}, \"2\": {\"precision\": 0.36363636363636365, \"recall\": 0.2857142857142857, \"f1-score\": 0.32, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.6428571428571429, \"recall\": 0.75, \"f1-score\": 0.6923076923076924, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.6363636363636364, \"recall\": 0.875, \"f1-score\": 0.7368421052631579, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7363373537286582, \"recall\": 0.7226303017969684, \"f1-score\": 0.7197707847707847, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7081312780070543, \"recall\": 0.6825396825396826, \"f1-score\": 0.6865492256281729, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}}", "eval_f1_macro": 71.97707847707846, "eval_f1_micro": 68.25396825396825, "eval_f1_weighted": 68.65492256281729, "eval_loss": 0.7570154070854187, "eval_runtime": 2.6807, "eval_samples_per_second": 47.003, "step": 672 }, { "epoch": 43.0, "learning_rate": 0.00026166666666666667, "loss": 0.1512, "step": 688 }, { "epoch": 43.0, "eval_accuracy": 61.904761904761905, "eval_average_metrics": 63.970862360643615, "eval_classification_report": "{\"0\": {\"precision\": 0.7352941176470589, \"recall\": 0.6410256410256411, \"f1-score\": 0.6849315068493151, \"support\": 39.0}, \"1\": {\"precision\": 0.2777777777777778, \"recall\": 0.625, \"f1-score\": 0.3846153846153846, \"support\": 16.0}, \"2\": {\"precision\": 0.3333333333333333, \"recall\": 0.21428571428571427, \"f1-score\": 0.2608695652173913, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.875, \"recall\": 0.6363636363636364, \"f1-score\": 0.7368421052631579, \"support\": 11.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.6666666666666666, \"f1-score\": 0.7272727272727272, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.7777777777777778, \"recall\": 0.875, \"f1-score\": 0.823529411764706, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6190476190476191, \"recall\": 0.6190476190476191, \"f1-score\": 0.6190476190476191, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7304647785039942, \"recall\": 0.670679937346604, \"f1-score\": 0.6846211236385987, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6873793962029257, \"recall\": 0.6190476190476191, \"f1-score\": 0.6361181326919078, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6190476190476191, \"recall\": 0.6190476190476191, \"f1-score\": 0.6190476190476191, \"support\": 126.0}}", "eval_f1_macro": 68.46211236385987, "eval_f1_micro": 61.904761904761905, "eval_f1_weighted": 63.611813269190776, "eval_loss": 0.7750742435455322, "eval_runtime": 2.9216, "eval_samples_per_second": 43.127, "step": 688 }, { "epoch": 44.0, "learning_rate": 0.00026, "loss": 0.1566, "step": 704 }, { "epoch": 44.0, "eval_accuracy": 65.87301587301587, "eval_average_metrics": 67.71547455624534, "eval_classification_report": "{\"0\": {\"precision\": 0.8064516129032258, \"recall\": 0.6410256410256411, \"f1-score\": 0.7142857142857142, \"support\": 39.0}, \"1\": {\"precision\": 0.35714285714285715, \"recall\": 0.625, \"f1-score\": 0.45454545454545453, \"support\": 16.0}, \"2\": {\"precision\": 0.26666666666666666, \"recall\": 0.2857142857142857, \"f1-score\": 0.2758620689655172, \"support\": 14.0}, \"3\": {\"precision\": 0.8, \"recall\": 0.8, \"f1-score\": 0.8000000000000002, \"support\": 15.0}, \"4\": {\"precision\": 0.8888888888888888, \"recall\": 0.7272727272727273, \"f1-score\": 0.7999999999999999, \"support\": 11.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.6666666666666666, \"f1-score\": 0.761904761904762, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.7777777777777778, \"recall\": 0.875, \"f1-score\": 0.823529411764706, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7400907435853673, \"recall\": 0.7109396776063444, \"f1-score\": 0.7170729803589845, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7098484017262819, \"recall\": 0.6587301587301587, \"f1-score\": 0.6740856844305119, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}}", "eval_f1_macro": 71.70729803589845, "eval_f1_micro": 65.87301587301587, "eval_f1_weighted": 67.40856844305118, "eval_loss": 0.7942809462547302, "eval_runtime": 2.5543, "eval_samples_per_second": 49.329, "step": 704 }, { "epoch": 45.0, "learning_rate": 0.00025833333333333334, "loss": 0.1368, "step": 720 }, { "epoch": 45.0, "eval_accuracy": 69.84126984126983, "eval_average_metrics": 70.93544862781215, "eval_classification_report": "{\"0\": {\"precision\": 0.7631578947368421, \"recall\": 0.7435897435897436, \"f1-score\": 0.7532467532467534, \"support\": 39.0}, \"1\": {\"precision\": 0.6363636363636364, \"recall\": 0.4375, \"f1-score\": 0.5185185185185185, \"support\": 16.0}, \"2\": {\"precision\": 0.4074074074074074, \"recall\": 0.7857142857142857, \"f1-score\": 0.5365853658536585, \"support\": 14.0}, \"3\": {\"precision\": 0.8181818181818182, \"recall\": 0.6, \"f1-score\": 0.6923076923076923, \"support\": 15.0}, \"4\": {\"precision\": 0.8888888888888888, \"recall\": 0.7272727272727273, \"f1-score\": 0.7999999999999999, \"support\": 11.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.75, \"f1-score\": 0.8571428571428571, \"support\": 12.0}, \"6\": {\"precision\": 0.8571428571428571, \"recall\": 0.6666666666666666, \"f1-score\": 0.75, \"support\": 9.0}, \"7\": {\"precision\": 0.5833333333333334, \"recall\": 0.875, \"f1-score\": 0.7000000000000001, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6984126984126984, \"recall\": 0.6984126984126984, \"f1-score\": 0.6984126984126984, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7727195373394203, \"recall\": 0.7317492692492693, \"f1-score\": 0.7342001318966089, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7466677556485409, \"recall\": 0.6984126984126984, \"f1-score\": 0.7063924163904806, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6984126984126984, \"recall\": 0.6984126984126984, \"f1-score\": 0.6984126984126984, \"support\": 126.0}}", "eval_f1_macro": 73.42001318966089, "eval_f1_micro": 69.84126984126983, "eval_f1_weighted": 70.63924163904805, "eval_loss": 0.8418033123016357, "eval_runtime": 1.811, "eval_samples_per_second": 69.576, "step": 720 }, { "epoch": 46.0, "learning_rate": 0.00025666666666666665, "loss": 0.1334, "step": 736 }, { "epoch": 46.0, "eval_accuracy": 69.04761904761905, "eval_average_metrics": 69.36167522564583, "eval_classification_report": "{\"0\": {\"precision\": 0.7560975609756098, \"recall\": 0.7948717948717948, \"f1-score\": 0.7749999999999999, \"support\": 39.0}, \"1\": {\"precision\": 0.625, \"recall\": 0.3125, \"f1-score\": 0.4166666666666667, \"support\": 16.0}, \"2\": {\"precision\": 0.4375, \"recall\": 0.5, \"f1-score\": 0.4666666666666667, \"support\": 14.0}, \"3\": {\"precision\": 0.7333333333333333, \"recall\": 0.7333333333333333, \"f1-score\": 0.7333333333333333, \"support\": 15.0}, \"4\": {\"precision\": 0.8888888888888888, \"recall\": 0.7272727272727273, \"f1-score\": 0.7999999999999999, \"support\": 11.0}, \"5\": {\"precision\": 0.6, \"recall\": 0.75, \"f1-score\": 0.6666666666666665, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.5833333333333334, \"recall\": 0.875, \"f1-score\": 0.7000000000000001, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6904761904761905, \"recall\": 0.6904761904761905, \"f1-score\": 0.6904761904761905, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7221281240590183, \"recall\": 0.7189728481395148, \"f1-score\": 0.7090958605664488, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6994622962102637, \"recall\": 0.6904761904761905, \"f1-score\": 0.6844187675070028, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6904761904761905, \"recall\": 0.6904761904761905, \"f1-score\": 0.6904761904761905, \"support\": 126.0}}", "eval_f1_macro": 70.90958605664488, "eval_f1_micro": 69.04761904761905, "eval_f1_weighted": 68.44187675070029, "eval_loss": 0.8219408392906189, "eval_runtime": 2.2378, "eval_samples_per_second": 56.305, "step": 736 }, { "epoch": 47.0, "learning_rate": 0.00025499999999999996, "loss": 0.1405, "step": 752 }, { "epoch": 47.0, "eval_accuracy": 68.25396825396825, "eval_average_metrics": 69.12963718921321, "eval_classification_report": "{\"0\": {\"precision\": 0.7631578947368421, \"recall\": 0.7435897435897436, \"f1-score\": 0.7532467532467534, \"support\": 39.0}, \"1\": {\"precision\": 0.42105263157894735, \"recall\": 0.5, \"f1-score\": 0.45714285714285713, \"support\": 16.0}, \"2\": {\"precision\": 0.36363636363636365, \"recall\": 0.2857142857142857, \"f1-score\": 0.32, \"support\": 14.0}, \"3\": {\"precision\": 0.8333333333333334, \"recall\": 0.6666666666666666, \"f1-score\": 0.7407407407407408, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.625, \"recall\": 0.8333333333333334, \"f1-score\": 0.7142857142857143, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.6363636363636364, \"recall\": 0.875, \"f1-score\": 0.7368421052631579, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7269493177387915, \"recall\": 0.7222515139181805, \"f1-score\": 0.717155669758009, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6950937950937951, \"recall\": 0.6825396825396826, \"f1-score\": 0.6829504527311545, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}}", "eval_f1_macro": 71.7155669758009, "eval_f1_micro": 68.25396825396825, "eval_f1_weighted": 68.29504527311545, "eval_loss": 0.7696214318275452, "eval_runtime": 2.1644, "eval_samples_per_second": 58.214, "step": 752 }, { "epoch": 48.0, "learning_rate": 0.00025333333333333333, "loss": 0.1079, "step": 768 }, { "epoch": 48.0, "eval_accuracy": 65.87301587301587, "eval_average_metrics": 67.12817274680924, "eval_classification_report": "{\"0\": {\"precision\": 0.75, \"recall\": 0.7692307692307693, \"f1-score\": 0.7594936708860761, \"support\": 39.0}, \"1\": {\"precision\": 0.3448275862068966, \"recall\": 0.625, \"f1-score\": 0.4444444444444445, \"support\": 16.0}, \"2\": {\"precision\": 0.2727272727272727, \"recall\": 0.21428571428571427, \"f1-score\": 0.23999999999999996, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.8888888888888888, \"recall\": 0.7272727272727273, \"f1-score\": 0.7999999999999999, \"support\": 11.0}, \"5\": {\"precision\": 0.8181818181818182, \"recall\": 0.75, \"f1-score\": 0.7826086956521738, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7432123644767324, \"recall\": 0.6765074431741098, \"f1-score\": 0.6986903864054845, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7015529246645831, \"recall\": 0.6587301587301587, \"f1-score\": 0.6689762060065675, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}}", "eval_f1_macro": 69.86903864054845, "eval_f1_micro": 65.87301587301587, "eval_f1_weighted": 66.89762060065675, "eval_loss": 0.8394961953163147, "eval_runtime": 1.9951, "eval_samples_per_second": 63.155, "step": 768 }, { "epoch": 49.0, "learning_rate": 0.00025166666666666664, "loss": 0.1148, "step": 784 }, { "epoch": 49.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 67.83250211230256, "eval_classification_report": "{\"0\": {\"precision\": 0.725, \"recall\": 0.7435897435897436, \"f1-score\": 0.7341772151898733, \"support\": 39.0}, \"1\": {\"precision\": 0.36, \"recall\": 0.5625, \"f1-score\": 0.43902439024390244, \"support\": 16.0}, \"2\": {\"precision\": 0.4, \"recall\": 0.2857142857142857, \"f1-score\": 0.3333333333333333, \"support\": 14.0}, \"3\": {\"precision\": 0.7692307692307693, \"recall\": 0.6666666666666666, \"f1-score\": 0.7142857142857142, \"support\": 15.0}, \"4\": {\"precision\": 0.875, \"recall\": 0.6363636363636364, \"f1-score\": 0.7368421052631579, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.7, \"recall\": 0.875, \"f1-score\": 0.7777777777777777, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7338034188034188, \"recall\": 0.6997346789013457, \"f1-score\": 0.7085724184489204, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6910592185592186, \"recall\": 0.6666666666666666, \"f1-score\": 0.6713943327098493, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 70.85724184489204, "eval_f1_micro": 66.66666666666666, "eval_f1_weighted": 67.13943327098492, "eval_loss": 0.8659495711326599, "eval_runtime": 2.5246, "eval_samples_per_second": 49.909, "step": 784 }, { "epoch": 50.0, "learning_rate": 0.00025, "loss": 0.0971, "step": 800 }, { "epoch": 50.0, "eval_accuracy": 63.49206349206349, "eval_average_metrics": 64.73692701910977, "eval_classification_report": "{\"0\": {\"precision\": 0.7352941176470589, \"recall\": 0.6410256410256411, \"f1-score\": 0.6849315068493151, \"support\": 39.0}, \"1\": {\"precision\": 0.4090909090909091, \"recall\": 0.5625, \"f1-score\": 0.47368421052631576, \"support\": 16.0}, \"2\": {\"precision\": 0.3076923076923077, \"recall\": 0.2857142857142857, \"f1-score\": 0.29629629629629634, \"support\": 14.0}, \"3\": {\"precision\": 0.7692307692307693, \"recall\": 0.6666666666666666, \"f1-score\": 0.7142857142857142, \"support\": 15.0}, \"4\": {\"precision\": 0.8888888888888888, \"recall\": 0.7272727272727273, \"f1-score\": 0.7999999999999999, \"support\": 11.0}, \"5\": {\"precision\": 0.6, \"recall\": 0.75, \"f1-score\": 0.6666666666666665, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.6666666666666666, \"recall\": 0.75, \"f1-score\": 0.7058823529411765, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6349206349206349, \"recall\": 0.6349206349206349, \"f1-score\": 0.6349206349206349, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.6838490485549309, \"recall\": 0.6845507887174553, \"f1-score\": 0.6799471694825847, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6538030959599587, \"recall\": 0.6349206349206349, \"f1-score\": 0.6396886414405366, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6349206349206349, \"recall\": 0.6349206349206349, \"f1-score\": 0.6349206349206349, \"support\": 126.0}}", "eval_f1_macro": 67.99471694825847, "eval_f1_micro": 63.49206349206349, "eval_f1_weighted": 63.96886414405366, "eval_loss": 0.8530350923538208, "eval_runtime": 2.5262, "eval_samples_per_second": 49.877, "step": 800 }, { "epoch": 51.0, "learning_rate": 0.0002483333333333333, "loss": 0.1113, "step": 816 }, { "epoch": 51.0, "eval_accuracy": 60.317460317460316, "eval_average_metrics": 62.40344000848202, "eval_classification_report": "{\"0\": {\"precision\": 0.7419354838709677, \"recall\": 0.5897435897435898, \"f1-score\": 0.6571428571428573, \"support\": 39.0}, \"1\": {\"precision\": 0.3125, \"recall\": 0.625, \"f1-score\": 0.4166666666666667, \"support\": 16.0}, \"2\": {\"precision\": 0.21428571428571427, \"recall\": 0.21428571428571427, \"f1-score\": 0.21428571428571427, \"support\": 14.0}, \"3\": {\"precision\": 0.8181818181818182, \"recall\": 0.6, \"f1-score\": 0.6923076923076923, \"support\": 15.0}, \"4\": {\"precision\": 0.8888888888888888, \"recall\": 0.7272727272727273, \"f1-score\": 0.7999999999999999, \"support\": 11.0}, \"5\": {\"precision\": 0.75, \"recall\": 0.75, \"f1-score\": 0.75, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6031746031746031, \"recall\": 0.6031746031746031, \"f1-score\": 0.6031746031746031, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7016752910570115, \"recall\": 0.65656442323109, \"f1-score\": 0.6689554454260337, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6632958304425279, \"recall\": 0.6031746031746031, \"f1-score\": 0.620832948564041, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6031746031746031, \"recall\": 0.6031746031746031, \"f1-score\": 0.6031746031746031, \"support\": 126.0}}", "eval_f1_macro": 66.89554454260337, "eval_f1_micro": 60.317460317460316, "eval_f1_weighted": 62.0832948564041, "eval_loss": 0.9224846363067627, "eval_runtime": 2.4417, "eval_samples_per_second": 51.604, "step": 816 }, { "epoch": 52.0, "learning_rate": 0.0002466666666666666, "loss": 0.1021, "step": 832 }, { "epoch": 52.0, "eval_accuracy": 65.07936507936508, "eval_average_metrics": 66.27933041572561, "eval_classification_report": "{\"0\": {\"precision\": 0.6590909090909091, \"recall\": 0.7435897435897436, \"f1-score\": 0.6987951807228915, \"support\": 39.0}, \"1\": {\"precision\": 0.42105263157894735, \"recall\": 0.5, \"f1-score\": 0.45714285714285713, \"support\": 16.0}, \"2\": {\"precision\": 0.3076923076923077, \"recall\": 0.2857142857142857, \"f1-score\": 0.29629629629629634, \"support\": 14.0}, \"3\": {\"precision\": 0.8333333333333334, \"recall\": 0.6666666666666666, \"f1-score\": 0.7407407407407408, \"support\": 15.0}, \"4\": {\"precision\": 0.8888888888888888, \"recall\": 0.7272727272727273, \"f1-score\": 0.7999999999999999, \"support\": 11.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.6666666666666666, \"f1-score\": 0.7272727272727272, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.6666666666666666, \"f1-score\": 0.8, \"support\": 9.0}, \"7\": {\"precision\": 0.6363636363636364, \"recall\": 0.875, \"f1-score\": 0.7368421052631579, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6507936507936508, \"recall\": 0.6507936507936508, \"f1-score\": 0.6507936507936508, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7273801896608914, \"recall\": 0.6812863062863063, \"f1-score\": 0.6952322119376301, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6723632280649825, \"recall\": 0.6507936507936508, \"f1-score\": 0.6543537031040931, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6507936507936508, \"recall\": 0.6507936507936508, \"f1-score\": 0.6507936507936508, \"support\": 126.0}}", "eval_f1_macro": 69.523221193763, "eval_f1_micro": 65.07936507936508, "eval_f1_weighted": 65.43537031040931, "eval_loss": 0.9103673696517944, "eval_runtime": 2.4016, "eval_samples_per_second": 52.466, "step": 832 }, { "epoch": 53.0, "learning_rate": 0.000245, "loss": 0.0924, "step": 848 }, { "epoch": 53.0, "eval_accuracy": 65.87301587301587, "eval_average_metrics": 67.3363995344273, "eval_classification_report": "{\"0\": {\"precision\": 0.7567567567567568, \"recall\": 0.717948717948718, \"f1-score\": 0.736842105263158, \"support\": 39.0}, \"1\": {\"precision\": 0.3333333333333333, \"recall\": 0.5625, \"f1-score\": 0.4186046511627907, \"support\": 16.0}, \"2\": {\"precision\": 0.2727272727272727, \"recall\": 0.21428571428571427, \"f1-score\": 0.23999999999999996, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.75, \"recall\": 0.75, \"f1-score\": 0.75, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.7, \"recall\": 0.875, \"f1-score\": 0.7777777777777777, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7347574847574847, \"recall\": 0.7017437809104475, \"f1-score\": 0.7083741545940649, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6957541957541958, \"recall\": 0.6587301587301587, \"f1-score\": 0.6676215093227099, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}}", "eval_f1_macro": 70.8374154594065, "eval_f1_micro": 65.87301587301587, "eval_f1_weighted": 66.762150932271, "eval_loss": 0.9239699840545654, "eval_runtime": 2.4446, "eval_samples_per_second": 51.541, "step": 848 }, { "epoch": 54.0, "learning_rate": 0.0002433333333333333, "loss": 0.0892, "step": 864 }, { "epoch": 54.0, "eval_accuracy": 65.87301587301587, "eval_average_metrics": 66.89773291629993, "eval_classification_report": "{\"0\": {\"precision\": 0.6818181818181818, \"recall\": 0.7692307692307693, \"f1-score\": 0.7228915662650602, \"support\": 39.0}, \"1\": {\"precision\": 0.47619047619047616, \"recall\": 0.625, \"f1-score\": 0.5405405405405405, \"support\": 16.0}, \"2\": {\"precision\": 0.2857142857142857, \"recall\": 0.2857142857142857, \"f1-score\": 0.2857142857142857, \"support\": 14.0}, \"3\": {\"precision\": 0.8333333333333334, \"recall\": 0.6666666666666666, \"f1-score\": 0.7407407407407408, \"support\": 15.0}, \"4\": {\"precision\": 0.8888888888888888, \"recall\": 0.7272727272727273, \"f1-score\": 0.7999999999999999, \"support\": 11.0}, \"5\": {\"precision\": 0.7272727272727273, \"recall\": 0.6666666666666666, \"f1-score\": 0.6956521739130435, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.6666666666666666, \"f1-score\": 0.8, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7341670675004008, \"recall\": 0.6702464202464202, \"f1-score\": 0.6946895526489264, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6819785153118486, \"recall\": 0.6587301587301587, \"f1-score\": 0.6637594465427537, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}}", "eval_f1_macro": 69.46895526489264, "eval_f1_micro": 65.87301587301587, "eval_f1_weighted": 66.37594465427537, "eval_loss": 0.935924768447876, "eval_runtime": 2.5052, "eval_samples_per_second": 50.295, "step": 864 }, { "epoch": 55.0, "learning_rate": 0.00024166666666666664, "loss": 0.087, "step": 880 }, { "epoch": 55.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 67.48340179433012, "eval_classification_report": "{\"0\": {\"precision\": 0.7209302325581395, \"recall\": 0.7948717948717948, \"f1-score\": 0.7560975609756098, \"support\": 39.0}, \"1\": {\"precision\": 0.42105263157894735, \"recall\": 0.5, \"f1-score\": 0.45714285714285713, \"support\": 16.0}, \"2\": {\"precision\": 0.3076923076923077, \"recall\": 0.2857142857142857, \"f1-score\": 0.29629629629629634, \"support\": 14.0}, \"3\": {\"precision\": 0.8181818181818182, \"recall\": 0.6, \"f1-score\": 0.6923076923076923, \"support\": 15.0}, \"4\": {\"precision\": 0.8888888888888888, \"recall\": 0.7272727272727273, \"f1-score\": 0.7999999999999999, \"support\": 11.0}, \"5\": {\"precision\": 0.8181818181818182, \"recall\": 0.75, \"f1-score\": 0.7826086956521738, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.6, \"recall\": 0.75, \"f1-score\": 0.6666666666666665, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7166586330091023, \"recall\": 0.6872929539596205, \"f1-score\": 0.697183242311778, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6801944472334108, \"recall\": 0.6666666666666666, \"f1-score\": 0.6688194961280935, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 69.7183242311778, "eval_f1_micro": 66.66666666666666, "eval_f1_weighted": 66.88194961280935, "eval_loss": 0.9358143210411072, "eval_runtime": 2.5406, "eval_samples_per_second": 49.595, "step": 880 }, { "epoch": 56.0, "learning_rate": 0.00023999999999999998, "loss": 0.0748, "step": 896 }, { "epoch": 56.0, "eval_accuracy": 64.28571428571429, "eval_average_metrics": 65.88488743416504, "eval_classification_report": "{\"0\": {\"precision\": 0.7297297297297297, \"recall\": 0.6923076923076923, \"f1-score\": 0.7105263157894737, \"support\": 39.0}, \"1\": {\"precision\": 0.3103448275862069, \"recall\": 0.5625, \"f1-score\": 0.4, \"support\": 16.0}, \"2\": {\"precision\": 0.3, \"recall\": 0.21428571428571427, \"f1-score\": 0.25, \"support\": 14.0}, \"3\": {\"precision\": 0.8181818181818182, \"recall\": 0.6, \"f1-score\": 0.6923076923076923, \"support\": 15.0}, \"4\": {\"precision\": 0.8888888888888888, \"recall\": 0.7272727272727273, \"f1-score\": 0.7999999999999999, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.7, \"recall\": 0.875, \"f1-score\": 0.7777777777777777, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7246828071540716, \"recall\": 0.6887937679604347, \"f1-score\": 0.6969247795357187, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6821466805662207, \"recall\": 0.6428571428571429, \"f1-score\": 0.6527564321165972, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}}", "eval_f1_macro": 69.69247795357188, "eval_f1_micro": 64.28571428571429, "eval_f1_weighted": 65.27564321165971, "eval_loss": 1.020475149154663, "eval_runtime": 2.2859, "eval_samples_per_second": 55.121, "step": 896 }, { "epoch": 57.0, "learning_rate": 0.0002383333333333333, "loss": 0.0847, "step": 912 }, { "epoch": 57.0, "eval_accuracy": 64.28571428571429, "eval_average_metrics": 65.31454850782582, "eval_classification_report": "{\"0\": {\"precision\": 0.6521739130434783, \"recall\": 0.7692307692307693, \"f1-score\": 0.7058823529411764, \"support\": 39.0}, \"1\": {\"precision\": 0.4166666666666667, \"recall\": 0.625, \"f1-score\": 0.5, \"support\": 16.0}, \"2\": {\"precision\": 0.25, \"recall\": 0.21428571428571427, \"f1-score\": 0.23076923076923075, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.8888888888888888, \"recall\": 0.7272727272727273, \"f1-score\": 0.7999999999999999, \"support\": 11.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.6666666666666666, \"f1-score\": 0.7272727272727272, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.5555555555555556, \"f1-score\": 0.7142857142857143, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7367895657750732, \"recall\": 0.6499642332975666, \"f1-score\": 0.6793452734629205, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6772212412999163, \"recall\": 0.6428571428571429, \"f1-score\": 0.6475223811358265, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}}", "eval_f1_macro": 67.93452734629206, "eval_f1_micro": 64.28571428571429, "eval_f1_weighted": 64.75223811358265, "eval_loss": 1.0358020067214966, "eval_runtime": 2.7749, "eval_samples_per_second": 45.407, "step": 912 }, { "epoch": 58.0, "learning_rate": 0.00023666666666666663, "loss": 0.0833, "step": 928 }, { "epoch": 58.0, "eval_accuracy": 65.07936507936508, "eval_average_metrics": 66.58761868489815, "eval_classification_report": "{\"0\": {\"precision\": 0.7, \"recall\": 0.717948717948718, \"f1-score\": 0.708860759493671, \"support\": 39.0}, \"1\": {\"precision\": 0.3333333333333333, \"recall\": 0.5625, \"f1-score\": 0.4186046511627907, \"support\": 16.0}, \"2\": {\"precision\": 0.36363636363636365, \"recall\": 0.2857142857142857, \"f1-score\": 0.32, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.8888888888888888, \"recall\": 0.7272727272727273, \"f1-score\": 0.7999999999999999, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 0.8571428571428571, \"recall\": 0.6666666666666666, \"f1-score\": 0.75, \"support\": 9.0}, \"7\": {\"precision\": 0.7, \"recall\": 0.875, \"f1-score\": 0.7777777777777777, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6507936507936508, \"recall\": 0.6507936507936508, \"f1-score\": 0.6507936507936508, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7381112714446048, \"recall\": 0.6872335997335998, \"f1-score\": 0.7014916674017841, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6913992533040151, \"recall\": 0.6507936507936508, \"f1-score\": 0.6604257784068401, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6507936507936508, \"recall\": 0.6507936507936508, \"f1-score\": 0.6507936507936508, \"support\": 126.0}}", "eval_f1_macro": 70.14916674017842, "eval_f1_micro": 65.07936507936508, "eval_f1_weighted": 66.04257784068402, "eval_loss": 0.9891613125801086, "eval_runtime": 2.6377, "eval_samples_per_second": 47.768, "step": 928 }, { "epoch": 59.0, "learning_rate": 0.00023499999999999997, "loss": 0.0711, "step": 944 }, { "epoch": 59.0, "eval_accuracy": 64.28571428571429, "eval_average_metrics": 65.78897114401316, "eval_classification_report": "{\"0\": {\"precision\": 0.75, \"recall\": 0.6923076923076923, \"f1-score\": 0.7199999999999999, \"support\": 39.0}, \"1\": {\"precision\": 0.3333333333333333, \"recall\": 0.5, \"f1-score\": 0.4, \"support\": 16.0}, \"2\": {\"precision\": 0.2857142857142857, \"recall\": 0.2857142857142857, \"f1-score\": 0.2857142857142857, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.75, \"recall\": 0.75, \"f1-score\": 0.75, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.6, \"recall\": 0.75, \"f1-score\": 0.6666666666666665, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7104497354497354, \"recall\": 0.6859979526646193, \"f1-score\": 0.6914503579209461, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6798280423280423, \"recall\": 0.6428571428571429, \"f1-score\": 0.6543942021252945, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}}", "eval_f1_macro": 69.14503579209462, "eval_f1_micro": 64.28571428571429, "eval_f1_weighted": 65.43942021252946, "eval_loss": 1.0114284753799438, "eval_runtime": 2.6121, "eval_samples_per_second": 48.238, "step": 944 }, { "epoch": 60.0, "learning_rate": 0.0002333333333333333, "loss": 0.0623, "step": 960 }, { "epoch": 60.0, "eval_accuracy": 62.698412698412696, "eval_average_metrics": 64.11538664266368, "eval_classification_report": "{\"0\": {\"precision\": 0.6923076923076923, \"recall\": 0.6923076923076923, \"f1-score\": 0.6923076923076923, \"support\": 39.0}, \"1\": {\"precision\": 0.3333333333333333, \"recall\": 0.3125, \"f1-score\": 0.3225806451612903, \"support\": 16.0}, \"2\": {\"precision\": 0.3333333333333333, \"recall\": 0.5, \"f1-score\": 0.4, \"support\": 14.0}, \"3\": {\"precision\": 0.6875, \"recall\": 0.7333333333333333, \"f1-score\": 0.7096774193548386, \"support\": 15.0}, \"4\": {\"precision\": 0.8888888888888888, \"recall\": 0.7272727272727273, \"f1-score\": 0.7999999999999999, \"support\": 11.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.6666666666666666, \"f1-score\": 0.8, \"support\": 12.0}, \"6\": {\"precision\": 0.8571428571428571, \"recall\": 0.6666666666666666, \"f1-score\": 0.75, \"support\": 9.0}, \"7\": {\"precision\": 0.5555555555555556, \"recall\": 0.625, \"f1-score\": 0.5882352941176471, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.626984126984127, \"recall\": 0.626984126984127, \"f1-score\": 0.626984126984127, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7053401845068511, \"recall\": 0.6581941206941208, \"f1-score\": 0.6736445612157187, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6607064121945074, \"recall\": 0.626984126984127, \"f1-score\": 0.6370026505225747, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.626984126984127, \"recall\": 0.626984126984127, \"f1-score\": 0.626984126984127, \"support\": 126.0}}", "eval_f1_macro": 67.36445612157186, "eval_f1_micro": 62.698412698412696, "eval_f1_weighted": 63.700265052257464, "eval_loss": 1.0231677293777466, "eval_runtime": 2.4531, "eval_samples_per_second": 51.364, "step": 960 }, { "epoch": 61.0, "learning_rate": 0.00023166666666666667, "loss": 0.0673, "step": 976 }, { "epoch": 61.0, "eval_accuracy": 69.04761904761905, "eval_average_metrics": 69.8505897825137, "eval_classification_report": "{\"0\": {\"precision\": 0.7692307692307693, \"recall\": 0.7692307692307693, \"f1-score\": 0.7692307692307693, \"support\": 39.0}, \"1\": {\"precision\": 0.5294117647058824, \"recall\": 0.5625, \"f1-score\": 0.5454545454545455, \"support\": 16.0}, \"2\": {\"precision\": 0.26666666666666666, \"recall\": 0.2857142857142857, \"f1-score\": 0.2758620689655172, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6666666666666666, \"recall\": 0.8333333333333334, \"f1-score\": 0.7407407407407408, \"support\": 12.0}, \"6\": {\"precision\": 0.8888888888888888, \"recall\": 0.8888888888888888, \"f1-score\": 0.8888888888888888, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6904761904761905, \"recall\": 0.6904761904761905, \"f1-score\": 0.6904761904761905, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7283284072499758, \"recall\": 0.7166128624461958, \"f1-score\": 0.7190611821837876, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7042879778173896, \"recall\": 0.6904761904761905, \"f1-score\": 0.6940100281643795, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6904761904761905, \"recall\": 0.6904761904761905, \"f1-score\": 0.6904761904761905, \"support\": 126.0}}", "eval_f1_macro": 71.90611821837875, "eval_f1_micro": 69.04761904761905, "eval_f1_weighted": 69.40100281643795, "eval_loss": 1.0551996231079102, "eval_runtime": 2.0165, "eval_samples_per_second": 62.484, "step": 976 }, { "epoch": 62.0, "learning_rate": 0.00023, "loss": 0.0633, "step": 992 }, { "epoch": 62.0, "eval_accuracy": 65.87301587301587, "eval_average_metrics": 67.54340489187007, "eval_classification_report": "{\"0\": {\"precision\": 0.7297297297297297, \"recall\": 0.6923076923076923, \"f1-score\": 0.7105263157894737, \"support\": 39.0}, \"1\": {\"precision\": 0.4, \"recall\": 0.625, \"f1-score\": 0.48780487804878053, \"support\": 16.0}, \"2\": {\"precision\": 0.3333333333333333, \"recall\": 0.42857142857142855, \"f1-score\": 0.375, \"support\": 14.0}, \"3\": {\"precision\": 0.8333333333333334, \"recall\": 0.6666666666666666, \"f1-score\": 0.7407407407407408, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.6666666666666666, \"f1-score\": 0.8, \"support\": 12.0}, \"6\": {\"precision\": 0.8571428571428571, \"recall\": 0.6666666666666666, \"f1-score\": 0.75, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.751980551980552, \"recall\": 0.6876734376734377, \"f1-score\": 0.7097646064876132, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7091642663071233, \"recall\": 0.6587301587301587, \"f1-score\": 0.6745112717268718, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}}", "eval_f1_macro": 70.97646064876132, "eval_f1_micro": 65.87301587301587, "eval_f1_weighted": 67.45112717268718, "eval_loss": 1.0290706157684326, "eval_runtime": 2.1393, "eval_samples_per_second": 58.899, "step": 992 }, { "epoch": 63.0, "learning_rate": 0.0002283333333333333, "loss": 0.0526, "step": 1008 }, { "epoch": 63.0, "eval_accuracy": 68.25396825396825, "eval_average_metrics": 68.17696190636929, "eval_classification_report": "{\"0\": {\"precision\": 0.7333333333333333, \"recall\": 0.8461538461538461, \"f1-score\": 0.7857142857142856, \"support\": 39.0}, \"1\": {\"precision\": 0.4666666666666667, \"recall\": 0.4375, \"f1-score\": 0.45161290322580644, \"support\": 16.0}, \"2\": {\"precision\": 0.2222222222222222, \"recall\": 0.14285714285714285, \"f1-score\": 0.17391304347826086, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6666666666666666, \"recall\": 0.8333333333333334, \"f1-score\": 0.7407407407407408, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.6, \"recall\": 0.75, \"f1-score\": 0.6666666666666665, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.6973063973063973, \"recall\": 0.6969411761078428, \"f1-score\": 0.6914221159974627, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6707471540804874, \"recall\": 0.6825396825396826, \"f1-score\": 0.6705769951779436, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}}", "eval_f1_macro": 69.14221159974628, "eval_f1_micro": 68.25396825396825, "eval_f1_weighted": 67.05769951779436, "eval_loss": 1.1038273572921753, "eval_runtime": 2.2908, "eval_samples_per_second": 55.002, "step": 1008 }, { "epoch": 64.0, "learning_rate": 0.00022666666666666663, "loss": 0.0615, "step": 1024 }, { "epoch": 64.0, "eval_accuracy": 65.87301587301587, "eval_average_metrics": 67.35517698402853, "eval_classification_report": "{\"0\": {\"precision\": 0.7435897435897436, \"recall\": 0.7435897435897436, \"f1-score\": 0.7435897435897437, \"support\": 39.0}, \"1\": {\"precision\": 0.35714285714285715, \"recall\": 0.625, \"f1-score\": 0.45454545454545453, \"support\": 16.0}, \"2\": {\"precision\": 0.23076923076923078, \"recall\": 0.21428571428571427, \"f1-score\": 0.22222222222222224, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.8888888888888888, \"recall\": 0.7272727272727273, \"f1-score\": 0.7999999999999999, \"support\": 11.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.75, \"f1-score\": 0.8571428571428571, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7465297048630382, \"recall\": 0.6810658477325143, \"f1-score\": 0.7041030139069355, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7059403339165243, \"recall\": 0.6587301587301587, \"f1-score\": 0.672643747993888, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}}", "eval_f1_macro": 70.41030139069355, "eval_f1_micro": 65.87301587301587, "eval_f1_weighted": 67.2643747993888, "eval_loss": 1.0696288347244263, "eval_runtime": 2.3354, "eval_samples_per_second": 53.951, "step": 1024 }, { "epoch": 65.0, "learning_rate": 0.000225, "loss": 0.0513, "step": 1040 }, { "epoch": 65.0, "eval_accuracy": 63.49206349206349, "eval_average_metrics": 64.71612880470677, "eval_classification_report": "{\"0\": {\"precision\": 0.8125, \"recall\": 0.6666666666666666, \"f1-score\": 0.7323943661971831, \"support\": 39.0}, \"1\": {\"precision\": 0.2962962962962963, \"recall\": 0.5, \"f1-score\": 0.37209302325581395, \"support\": 16.0}, \"2\": {\"precision\": 0.2, \"recall\": 0.14285714285714285, \"f1-score\": 0.16666666666666666, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6923076923076923, \"recall\": 0.75, \"f1-score\": 0.7199999999999999, \"support\": 12.0}, \"6\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"7\": {\"precision\": 0.6, \"recall\": 0.75, \"f1-score\": 0.6666666666666665, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6349206349206349, \"recall\": 0.6349206349206349, \"f1-score\": 0.6349206349206349, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.681940847218625, \"recall\": 0.6870290203623537, \"f1-score\": 0.6760215943511062, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6699821526210414, \"recall\": 0.6349206349206349, \"f1-score\": 0.6427822879958951, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6349206349206349, \"recall\": 0.6349206349206349, \"f1-score\": 0.6349206349206349, \"support\": 126.0}}", "eval_f1_macro": 67.60215943511062, "eval_f1_micro": 63.49206349206349, "eval_f1_weighted": 64.27822879958951, "eval_loss": 1.048816204071045, "eval_runtime": 2.0795, "eval_samples_per_second": 60.592, "step": 1040 }, { "epoch": 66.0, "learning_rate": 0.00022333333333333333, "loss": 0.0504, "step": 1056 }, { "epoch": 66.0, "eval_accuracy": 65.87301587301587, "eval_average_metrics": 66.95316701969813, "eval_classification_report": "{\"0\": {\"precision\": 0.7209302325581395, \"recall\": 0.7948717948717948, \"f1-score\": 0.7560975609756098, \"support\": 39.0}, \"1\": {\"precision\": 0.38095238095238093, \"recall\": 0.5, \"f1-score\": 0.4324324324324324, \"support\": 16.0}, \"2\": {\"precision\": 0.2857142857142857, \"recall\": 0.2857142857142857, \"f1-score\": 0.2857142857142857, \"support\": 14.0}, \"3\": {\"precision\": 0.8888888888888888, \"recall\": 0.5333333333333333, \"f1-score\": 0.6666666666666667, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.6666666666666666, \"f1-score\": 0.8, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.5454545454545454, \"recall\": 0.75, \"f1-score\": 0.631578947368421, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7329933703964711, \"recall\": 0.6807272973939641, \"f1-score\": 0.6947957957849976, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6959006893807558, \"recall\": 0.6587301587301587, \"f1-score\": 0.66587056754261, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}}", "eval_f1_macro": 69.47957957849977, "eval_f1_micro": 65.87301587301587, "eval_f1_weighted": 66.587056754261, "eval_loss": 1.0971872806549072, "eval_runtime": 2.1566, "eval_samples_per_second": 58.424, "step": 1056 }, { "epoch": 67.0, "learning_rate": 0.00022166666666666667, "loss": 0.0511, "step": 1072 }, { "epoch": 67.0, "eval_accuracy": 65.07936507936508, "eval_average_metrics": 66.3333388263136, "eval_classification_report": "{\"0\": {\"precision\": 0.717948717948718, \"recall\": 0.717948717948718, \"f1-score\": 0.717948717948718, \"support\": 39.0}, \"1\": {\"precision\": 0.4166666666666667, \"recall\": 0.625, \"f1-score\": 0.5, \"support\": 16.0}, \"2\": {\"precision\": 0.25, \"recall\": 0.21428571428571427, \"f1-score\": 0.23076923076923075, \"support\": 14.0}, \"3\": {\"precision\": 0.8461538461538461, \"recall\": 0.7333333333333333, \"f1-score\": 0.7857142857142856, \"support\": 15.0}, \"4\": {\"precision\": 0.8888888888888888, \"recall\": 0.7272727272727273, \"f1-score\": 0.7999999999999999, \"support\": 11.0}, \"5\": {\"precision\": 0.7272727272727273, \"recall\": 0.6666666666666666, \"f1-score\": 0.6956521739130435, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.656, \"recall\": 0.6507936507936508, \"f1-score\": 0.653386454183267, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7151351734685067, \"recall\": 0.6763649930316598, \"f1-score\": 0.6911422763085167, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6742326236373856, \"recall\": 0.6507936507936508, \"f1-score\": 0.6580111717671089, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6507936507936508, \"recall\": 0.6507936507936508, \"f1-score\": 0.6507936507936508, \"support\": 126.0}}", "eval_f1_macro": 69.11422763085167, "eval_f1_micro": 65.3386454183267, "eval_f1_weighted": 65.80111717671089, "eval_loss": 1.1548771858215332, "eval_runtime": 2.3337, "eval_samples_per_second": 53.991, "step": 1072 }, { "epoch": 68.0, "learning_rate": 0.00021999999999999995, "loss": 0.044, "step": 1088 }, { "epoch": 68.0, "eval_accuracy": 64.28571428571429, "eval_average_metrics": 65.52008870277126, "eval_classification_report": "{\"0\": {\"precision\": 0.7073170731707317, \"recall\": 0.7435897435897436, \"f1-score\": 0.725, \"support\": 39.0}, \"1\": {\"precision\": 0.38095238095238093, \"recall\": 0.5, \"f1-score\": 0.4324324324324324, \"support\": 16.0}, \"2\": {\"precision\": 0.26666666666666666, \"recall\": 0.2857142857142857, \"f1-score\": 0.2758620689655172, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.8888888888888888, \"recall\": 0.7272727272727273, \"f1-score\": 0.7999999999999999, \"support\": 11.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.6666666666666666, \"f1-score\": 0.7272727272727272, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.5555555555555556, \"recall\": 0.625, \"f1-score\": 0.5882352941176471, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7092746082583481, \"recall\": 0.6658542075208742, \"f1-score\": 0.6823958559759776, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6725993900064748, \"recall\": 0.6428571428571429, \"f1-score\": 0.6526934064205869, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}}", "eval_f1_macro": 68.23958559759777, "eval_f1_micro": 64.28571428571429, "eval_f1_weighted": 65.2693406420587, "eval_loss": 1.1375842094421387, "eval_runtime": 2.2841, "eval_samples_per_second": 55.165, "step": 1088 }, { "epoch": 69.0, "learning_rate": 0.0002183333333333333, "loss": 0.0392, "step": 1104 }, { "epoch": 69.0, "eval_accuracy": 65.87301587301587, "eval_average_metrics": 66.77867509596223, "eval_classification_report": "{\"0\": {\"precision\": 0.6976744186046512, \"recall\": 0.7692307692307693, \"f1-score\": 0.7317073170731708, \"support\": 39.0}, \"1\": {\"precision\": 0.45454545454545453, \"recall\": 0.625, \"f1-score\": 0.5263157894736842, \"support\": 16.0}, \"2\": {\"precision\": 0.23076923076923078, \"recall\": 0.21428571428571427, \"f1-score\": 0.22222222222222224, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.8888888888888888, \"recall\": 0.7272727272727273, \"f1-score\": 0.7999999999999999, \"support\": 11.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.6666666666666666, \"f1-score\": 0.7272727272727272, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.719225821551403, \"recall\": 0.6746555913222579, \"f1-score\": 0.6912436966352242, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6781049679167066, \"recall\": 0.6587301587301587, \"f1-score\": 0.6624429897429469, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}}", "eval_f1_macro": 69.12436966352243, "eval_f1_micro": 65.87301587301587, "eval_f1_weighted": 66.2442989742947, "eval_loss": 1.1221776008605957, "eval_runtime": 2.2241, "eval_samples_per_second": 56.653, "step": 1104 }, { "epoch": 70.0, "learning_rate": 0.00021666666666666666, "loss": 0.0373, "step": 1120 }, { "epoch": 70.0, "eval_accuracy": 64.28571428571429, "eval_average_metrics": 65.68782123958341, "eval_classification_report": "{\"0\": {\"precision\": 0.6744186046511628, \"recall\": 0.7435897435897436, \"f1-score\": 0.7073170731707318, \"support\": 39.0}, \"1\": {\"precision\": 0.4166666666666667, \"recall\": 0.625, \"f1-score\": 0.5, \"support\": 16.0}, \"2\": {\"precision\": 0.23076923076923078, \"recall\": 0.21428571428571427, \"f1-score\": 0.22222222222222224, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.8888888888888888, \"recall\": 0.7272727272727273, \"f1-score\": 0.7999999999999999, \"support\": 11.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.6666666666666666, \"f1-score\": 0.761904761904762, \"support\": 12.0}, \"6\": {\"precision\": 0.8571428571428571, \"recall\": 0.6666666666666666, \"f1-score\": 0.75, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.648, \"recall\": 0.6428571428571429, \"f1-score\": 0.6454183266932271, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7311279733760353, \"recall\": 0.6594609094609094, \"f1-score\": 0.6863712770216837, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6802312776842123, \"recall\": 0.6428571428571429, \"f1-score\": 0.6528661030112831, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}}", "eval_f1_macro": 68.63712770216837, "eval_f1_micro": 64.5418326693227, "eval_f1_weighted": 65.2866103011283, "eval_loss": 1.1850584745407104, "eval_runtime": 2.1903, "eval_samples_per_second": 57.528, "step": 1120 }, { "epoch": 71.0, "learning_rate": 0.000215, "loss": 0.047, "step": 1136 }, { "epoch": 71.0, "eval_accuracy": 65.07936507936508, "eval_average_metrics": 67.08205815586854, "eval_classification_report": "{\"0\": {\"precision\": 0.7647058823529411, \"recall\": 0.6666666666666666, \"f1-score\": 0.7123287671232877, \"support\": 39.0}, \"1\": {\"precision\": 0.4166666666666667, \"recall\": 0.625, \"f1-score\": 0.5, \"support\": 16.0}, \"2\": {\"precision\": 0.2916666666666667, \"recall\": 0.5, \"f1-score\": 0.3684210526315789, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.8888888888888888, \"recall\": 0.7272727272727273, \"f1-score\": 0.7999999999999999, \"support\": 11.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.6666666666666666, \"f1-score\": 0.8, \"support\": 12.0}, \"6\": {\"precision\": 0.8571428571428571, \"recall\": 0.6666666666666666, \"f1-score\": 0.75, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6507936507936508, \"recall\": 0.6507936507936508, \"f1-score\": 0.6507936507936508, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7602719538994048, \"recall\": 0.6826599326599326, \"f1-score\": 0.7074052506280336, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7255257321783931, \"recall\": 0.6507936507936508, \"f1-score\": 0.6742897740194064, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6507936507936508, \"recall\": 0.6507936507936508, \"f1-score\": 0.6507936507936508, \"support\": 126.0}}", "eval_f1_macro": 70.74052506280336, "eval_f1_micro": 65.07936507936508, "eval_f1_weighted": 67.42897740194064, "eval_loss": 1.1881213188171387, "eval_runtime": 2.2869, "eval_samples_per_second": 55.096, "step": 1136 }, { "epoch": 72.0, "learning_rate": 0.00021333333333333333, "loss": 0.0451, "step": 1152 }, { "epoch": 72.0, "eval_accuracy": 64.28571428571429, "eval_average_metrics": 65.33343695317178, "eval_classification_report": "{\"0\": {\"precision\": 0.7073170731707317, \"recall\": 0.7435897435897436, \"f1-score\": 0.725, \"support\": 39.0}, \"1\": {\"precision\": 0.34782608695652173, \"recall\": 0.5, \"f1-score\": 0.41025641025641024, \"support\": 16.0}, \"2\": {\"precision\": 0.2222222222222222, \"recall\": 0.14285714285714285, \"f1-score\": 0.17391304347826086, \"support\": 14.0}, \"3\": {\"precision\": 0.7857142857142857, \"recall\": 0.7333333333333333, \"f1-score\": 0.7586206896551724, \"support\": 15.0}, \"4\": {\"precision\": 0.8888888888888888, \"recall\": 0.7272727272727273, \"f1-score\": 0.7999999999999999, \"support\": 11.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.6666666666666666, \"f1-score\": 0.8, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.6, \"recall\": 0.75, \"f1-score\": 0.6666666666666665, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.648, \"recall\": 0.6428571428571429, \"f1-score\": 0.6454183266932271, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.703305148303381, \"recall\": 0.6712774879441546, \"f1-score\": 0.679137176426032, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6636919557108417, \"recall\": 0.6428571428571429, \"f1-score\": 0.6459248321504693, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}}", "eval_f1_macro": 67.9137176426032, "eval_f1_micro": 64.5418326693227, "eval_f1_weighted": 64.59248321504693, "eval_loss": 1.1849013566970825, "eval_runtime": 2.4186, "eval_samples_per_second": 52.097, "step": 1152 }, { "epoch": 73.0, "learning_rate": 0.00021166666666666667, "loss": 0.0522, "step": 1168 }, { "epoch": 73.0, "eval_accuracy": 65.07936507936508, "eval_average_metrics": 65.80845649106959, "eval_classification_report": "{\"0\": {\"precision\": 0.6818181818181818, \"recall\": 0.7692307692307693, \"f1-score\": 0.7228915662650602, \"support\": 39.0}, \"1\": {\"precision\": 0.4444444444444444, \"recall\": 0.5, \"f1-score\": 0.47058823529411764, \"support\": 16.0}, \"2\": {\"precision\": 0.2, \"recall\": 0.14285714285714285, \"f1-score\": 0.16666666666666666, \"support\": 14.0}, \"3\": {\"precision\": 0.8461538461538461, \"recall\": 0.7333333333333333, \"f1-score\": 0.7857142857142856, \"support\": 15.0}, \"4\": {\"precision\": 0.8888888888888888, \"recall\": 0.7272727272727273, \"f1-score\": 0.7999999999999999, \"support\": 11.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.6666666666666666, \"f1-score\": 0.7272727272727272, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.6, \"recall\": 0.75, \"f1-score\": 0.6666666666666665, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.656, \"recall\": 0.6507936507936508, \"f1-score\": 0.653386454183267, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.6932314598981265, \"recall\": 0.6741264907931575, \"f1-score\": 0.679730880628589, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6537468704135371, \"recall\": 0.6507936507936508, \"f1-score\": 0.648427274037277, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6507936507936508, \"recall\": 0.6507936507936508, \"f1-score\": 0.6507936507936508, \"support\": 126.0}}", "eval_f1_macro": 67.9730880628589, "eval_f1_micro": 65.3386454183267, "eval_f1_weighted": 64.8427274037277, "eval_loss": 1.1694395542144775, "eval_runtime": 2.2651, "eval_samples_per_second": 55.627, "step": 1168 }, { "epoch": 74.0, "learning_rate": 0.00020999999999999998, "loss": 0.0286, "step": 1184 }, { "epoch": 74.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 67.66186955726027, "eval_classification_report": "{\"0\": {\"precision\": 0.7317073170731707, \"recall\": 0.7692307692307693, \"f1-score\": 0.7499999999999999, \"support\": 39.0}, \"1\": {\"precision\": 0.45454545454545453, \"recall\": 0.625, \"f1-score\": 0.5263157894736842, \"support\": 16.0}, \"2\": {\"precision\": 0.3333333333333333, \"recall\": 0.35714285714285715, \"f1-score\": 0.3448275862068965, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.8888888888888888, \"recall\": 0.7272727272727273, \"f1-score\": 0.7999999999999999, \"support\": 11.0}, \"5\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7293808194214698, \"recall\": 0.6831211997878666, \"f1-score\": 0.6997784578642912, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6931987523596118, \"recall\": 0.6666666666666666, \"f1-score\": 0.6733629910927872, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 69.97784578642911, "eval_f1_micro": 66.66666666666666, "eval_f1_weighted": 67.33629910927871, "eval_loss": 1.2079041004180908, "eval_runtime": 2.2873, "eval_samples_per_second": 55.088, "step": 1184 }, { "epoch": 75.0, "learning_rate": 0.00020833333333333332, "loss": 0.0273, "step": 1200 }, { "epoch": 75.0, "eval_accuracy": 63.49206349206349, "eval_average_metrics": 64.1150641934985, "eval_classification_report": "{\"0\": {\"precision\": 0.6666666666666666, \"recall\": 0.7692307692307693, \"f1-score\": 0.7142857142857142, \"support\": 39.0}, \"1\": {\"precision\": 0.38461538461538464, \"recall\": 0.625, \"f1-score\": 0.4761904761904762, \"support\": 16.0}, \"2\": {\"precision\": 0.25, \"recall\": 0.14285714285714285, \"f1-score\": 0.18181818181818182, \"support\": 14.0}, \"3\": {\"precision\": 0.8333333333333334, \"recall\": 0.6666666666666666, \"f1-score\": 0.7407407407407408, \"support\": 15.0}, \"4\": {\"precision\": 0.875, \"recall\": 0.6363636363636364, \"f1-score\": 0.7368421052631579, \"support\": 11.0}, \"5\": {\"precision\": 0.7272727272727273, \"recall\": 0.6666666666666666, \"f1-score\": 0.6956521739130435, \"support\": 12.0}, \"6\": {\"precision\": 0.8571428571428571, \"recall\": 0.6666666666666666, \"f1-score\": 0.75, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6349206349206349, \"recall\": 0.6349206349206349, \"f1-score\": 0.6349206349206349, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.700924075924076, \"recall\": 0.6442723942723942, \"f1-score\": 0.66246622876422, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6502753199181771, \"recall\": 0.6349206349206349, \"f1-score\": 0.6322950691344501, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6349206349206349, \"recall\": 0.6349206349206349, \"f1-score\": 0.6349206349206349, \"support\": 126.0}}", "eval_f1_macro": 66.246622876422, "eval_f1_micro": 63.49206349206349, "eval_f1_weighted": 63.22950691344501, "eval_loss": 1.2864720821380615, "eval_runtime": 2.0948, "eval_samples_per_second": 60.148, "step": 1200 }, { "epoch": 76.0, "learning_rate": 0.00020666666666666666, "loss": 0.0287, "step": 1216 }, { "epoch": 76.0, "eval_accuracy": 65.07936507936508, "eval_average_metrics": 65.97486017888453, "eval_classification_report": "{\"0\": {\"precision\": 0.7073170731707317, \"recall\": 0.7435897435897436, \"f1-score\": 0.725, \"support\": 39.0}, \"1\": {\"precision\": 0.5333333333333333, \"recall\": 0.5, \"f1-score\": 0.5161290322580646, \"support\": 16.0}, \"2\": {\"precision\": 0.25, \"recall\": 0.2857142857142857, \"f1-score\": 0.26666666666666666, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.8888888888888888, \"recall\": 0.7272727272727273, \"f1-score\": 0.7999999999999999, \"support\": 11.0}, \"5\": {\"precision\": 0.6428571428571429, \"recall\": 0.75, \"f1-score\": 0.6923076923076924, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.5555555555555556, \"recall\": 0.625, \"f1-score\": 0.5882352941176471, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6507936507936508, \"recall\": 0.6507936507936508, \"f1-score\": 0.6507936507936508, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.6960911867415933, \"recall\": 0.6751134667801335, \"f1-score\": 0.6817052480398463, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6681870695227257, \"recall\": 0.6507936507936508, \"f1-score\": 0.6557018575282333, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6507936507936508, \"recall\": 0.6507936507936508, \"f1-score\": 0.6507936507936508, \"support\": 126.0}}", "eval_f1_macro": 68.17052480398463, "eval_f1_micro": 65.07936507936508, "eval_f1_weighted": 65.57018575282333, "eval_loss": 1.2555701732635498, "eval_runtime": 2.5226, "eval_samples_per_second": 49.949, "step": 1216 }, { "epoch": 77.0, "learning_rate": 0.000205, "loss": 0.0264, "step": 1232 }, { "epoch": 77.0, "eval_accuracy": 64.28571428571429, "eval_average_metrics": 65.56120650466995, "eval_classification_report": "{\"0\": {\"precision\": 0.7, \"recall\": 0.717948717948718, \"f1-score\": 0.708860759493671, \"support\": 39.0}, \"1\": {\"precision\": 0.4, \"recall\": 0.625, \"f1-score\": 0.48780487804878053, \"support\": 16.0}, \"2\": {\"precision\": 0.23076923076923078, \"recall\": 0.21428571428571427, \"f1-score\": 0.22222222222222224, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.8888888888888888, \"recall\": 0.7272727272727273, \"f1-score\": 0.7999999999999999, \"support\": 11.0}, \"5\": {\"precision\": 0.7272727272727273, \"recall\": 0.6666666666666666, \"f1-score\": 0.6956521739130435, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7161452744786078, \"recall\": 0.6689575856242523, \"f1-score\": 0.6859963201488732, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6719164213211832, \"recall\": 0.6428571428571429, \"f1-score\": 0.6507376543236391, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}}", "eval_f1_macro": 68.59963201488732, "eval_f1_micro": 64.28571428571429, "eval_f1_weighted": 65.0737654323639, "eval_loss": 1.2827969789505005, "eval_runtime": 2.3764, "eval_samples_per_second": 53.022, "step": 1232 }, { "epoch": 78.0, "learning_rate": 0.00020333333333333333, "loss": 0.0217, "step": 1248 }, { "epoch": 78.0, "eval_accuracy": 62.698412698412696, "eval_average_metrics": 64.05690823337882, "eval_classification_report": "{\"0\": {\"precision\": 0.6923076923076923, \"recall\": 0.6923076923076923, \"f1-score\": 0.6923076923076923, \"support\": 39.0}, \"1\": {\"precision\": 0.3448275862068966, \"recall\": 0.625, \"f1-score\": 0.4444444444444445, \"support\": 16.0}, \"2\": {\"precision\": 0.3, \"recall\": 0.21428571428571427, \"f1-score\": 0.25, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.8888888888888888, \"recall\": 0.7272727272727273, \"f1-score\": 0.7999999999999999, \"support\": 11.0}, \"5\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.626984126984127, \"recall\": 0.626984126984127, \"f1-score\": 0.626984126984127, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7091085053728732, \"recall\": 0.658701175367842, \"f1-score\": 0.6737349868722418, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6633674989791575, \"recall\": 0.626984126984127, \"f1-score\": 0.6345730884946571, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.626984126984127, \"recall\": 0.626984126984127, \"f1-score\": 0.626984126984127, \"support\": 126.0}}", "eval_f1_macro": 67.37349868722417, "eval_f1_micro": 62.698412698412696, "eval_f1_weighted": 63.45730884946571, "eval_loss": 1.3578648567199707, "eval_runtime": 2.402, "eval_samples_per_second": 52.457, "step": 1248 }, { "epoch": 79.0, "learning_rate": 0.00020166666666666667, "loss": 0.0238, "step": 1264 }, { "epoch": 79.0, "eval_accuracy": 62.698412698412696, "eval_average_metrics": 63.84424852562107, "eval_classification_report": "{\"0\": {\"precision\": 0.6521739130434783, \"recall\": 0.7692307692307693, \"f1-score\": 0.7058823529411764, \"support\": 39.0}, \"1\": {\"precision\": 0.375, \"recall\": 0.5625, \"f1-score\": 0.45, \"support\": 16.0}, \"2\": {\"precision\": 0.23076923076923078, \"recall\": 0.21428571428571427, \"f1-score\": 0.22222222222222224, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.8888888888888888, \"recall\": 0.7272727272727273, \"f1-score\": 0.7999999999999999, \"support\": 11.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.5, \"f1-score\": 0.6666666666666666, \"support\": 12.0}, \"6\": {\"precision\": 0.8571428571428571, \"recall\": 0.6666666666666666, \"f1-score\": 0.75, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.626984126984127, \"recall\": 0.626984126984127, \"f1-score\": 0.626984126984127, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7264517554372626, \"recall\": 0.6368469493469493, \"f1-score\": 0.6654446678956484, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.672968087046762, \"recall\": 0.626984126984127, \"f1-score\": 0.6343570191609406, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.626984126984127, \"recall\": 0.626984126984127, \"f1-score\": 0.626984126984127, \"support\": 126.0}}", "eval_f1_macro": 66.54446678956484, "eval_f1_micro": 62.698412698412696, "eval_f1_weighted": 63.435701916094054, "eval_loss": 1.3831439018249512, "eval_runtime": 2.0874, "eval_samples_per_second": 60.363, "step": 1264 }, { "epoch": 80.0, "learning_rate": 0.00019999999999999998, "loss": 0.0224, "step": 1280 }, { "epoch": 80.0, "eval_accuracy": 64.28571428571429, "eval_average_metrics": 65.2765297216774, "eval_classification_report": "{\"0\": {\"precision\": 0.7, \"recall\": 0.717948717948718, \"f1-score\": 0.708860759493671, \"support\": 39.0}, \"1\": {\"precision\": 0.42857142857142855, \"recall\": 0.5625, \"f1-score\": 0.4864864864864864, \"support\": 16.0}, \"2\": {\"precision\": 0.23076923076923078, \"recall\": 0.21428571428571427, \"f1-score\": 0.22222222222222224, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.6428571428571429, \"recall\": 0.75, \"f1-score\": 0.6923076923076924, \"support\": 12.0}, \"6\": {\"precision\": 0.8571428571428571, \"recall\": 0.6666666666666666, \"f1-score\": 0.75, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.6992701742701742, \"recall\": 0.6717213342213343, \"f1-score\": 0.6793297855112201, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6612419326705041, \"recall\": 0.6428571428571429, \"f1-score\": 0.6460171176415903, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}}", "eval_f1_macro": 67.93297855112202, "eval_f1_micro": 64.28571428571429, "eval_f1_weighted": 64.60171176415903, "eval_loss": 1.344422698020935, "eval_runtime": 1.8573, "eval_samples_per_second": 67.842, "step": 1280 }, { "epoch": 81.0, "learning_rate": 0.00019833333333333332, "loss": 0.0226, "step": 1296 }, { "epoch": 81.0, "eval_accuracy": 68.25396825396825, "eval_average_metrics": 69.60701952918498, "eval_classification_report": "{\"0\": {\"precision\": 0.7297297297297297, \"recall\": 0.6923076923076923, \"f1-score\": 0.7105263157894737, \"support\": 39.0}, \"1\": {\"precision\": 0.6, \"recall\": 0.5625, \"f1-score\": 0.5806451612903225, \"support\": 16.0}, \"2\": {\"precision\": 0.3333333333333333, \"recall\": 0.5, \"f1-score\": 0.4, \"support\": 14.0}, \"3\": {\"precision\": 0.8461538461538461, \"recall\": 0.7333333333333333, \"f1-score\": 0.7857142857142856, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6923076923076923, \"recall\": 0.75, \"f1-score\": 0.7199999999999999, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7434233684233684, \"recall\": 0.7176778468445135, \"f1-score\": 0.7271360775964789, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7080588241302527, \"recall\": 0.6825396825396826, \"f1-score\": 0.6920653384915557, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}}", "eval_f1_macro": 72.71360775964789, "eval_f1_micro": 68.25396825396825, "eval_f1_weighted": 69.20653384915558, "eval_loss": 1.3941203355789185, "eval_runtime": 2.3815, "eval_samples_per_second": 52.909, "step": 1296 }, { "epoch": 82.0, "learning_rate": 0.00019666666666666666, "loss": 0.0229, "step": 1312 }, { "epoch": 82.0, "eval_accuracy": 67.46031746031747, "eval_average_metrics": 68.01210064046779, "eval_classification_report": "{\"0\": {\"precision\": 0.6808510638297872, \"recall\": 0.8205128205128205, \"f1-score\": 0.7441860465116279, \"support\": 39.0}, \"1\": {\"precision\": 0.7, \"recall\": 0.4375, \"f1-score\": 0.5384615384615384, \"support\": 16.0}, \"2\": {\"precision\": 0.2, \"recall\": 0.21428571428571427, \"f1-score\": 0.20689655172413796, \"support\": 14.0}, \"3\": {\"precision\": 0.8461538461538461, \"recall\": 0.7333333333333333, \"f1-score\": 0.7857142857142856, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.8181818181818182, \"recall\": 0.75, \"f1-score\": 0.7826086956521738, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.5555555555555556, \"recall\": 0.625, \"f1-score\": 0.5882352941176471, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7198355623887539, \"recall\": 0.6862879404546072, \"f1-score\": 0.6978914496780051, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6857787733674258, \"recall\": 0.6746031746031746, \"f1-score\": 0.6733862267343573, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}}", "eval_f1_macro": 69.78914496780051, "eval_f1_micro": 67.46031746031747, "eval_f1_weighted": 67.33862267343574, "eval_loss": 1.401384711265564, "eval_runtime": 2.5855, "eval_samples_per_second": 48.733, "step": 1312 }, { "epoch": 83.0, "learning_rate": 0.000195, "loss": 0.0255, "step": 1328 }, { "epoch": 83.0, "eval_accuracy": 65.07936507936508, "eval_average_metrics": 66.14655245700384, "eval_classification_report": "{\"0\": {\"precision\": 0.7142857142857143, \"recall\": 0.7692307692307693, \"f1-score\": 0.7407407407407408, \"support\": 39.0}, \"1\": {\"precision\": 0.4090909090909091, \"recall\": 0.5625, \"f1-score\": 0.47368421052631576, \"support\": 16.0}, \"2\": {\"precision\": 0.21428571428571427, \"recall\": 0.21428571428571427, \"f1-score\": 0.21428571428571427, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.6666666666666666, \"f1-score\": 0.7272727272727272, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6507936507936508, \"recall\": 0.6507936507936508, \"f1-score\": 0.6507936507936508, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7152958152958153, \"recall\": 0.6704047495714163, \"f1-score\": 0.6868506290814512, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6768063285920428, \"recall\": 0.6507936507936508, \"f1-score\": 0.6574241676114005, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6507936507936508, \"recall\": 0.6507936507936508, \"f1-score\": 0.6507936507936508, \"support\": 126.0}}", "eval_f1_macro": 68.68506290814513, "eval_f1_micro": 65.07936507936508, "eval_f1_weighted": 65.74241676114005, "eval_loss": 1.370007038116455, "eval_runtime": 2.6426, "eval_samples_per_second": 47.68, "step": 1328 }, { "epoch": 84.0, "learning_rate": 0.00019333333333333333, "loss": 0.0209, "step": 1344 }, { "epoch": 84.0, "eval_accuracy": 62.698412698412696, "eval_average_metrics": 63.735388555564, "eval_classification_report": "{\"0\": {\"precision\": 0.7878787878787878, \"recall\": 0.6666666666666666, \"f1-score\": 0.7222222222222221, \"support\": 39.0}, \"1\": {\"precision\": 0.3448275862068966, \"recall\": 0.625, \"f1-score\": 0.4444444444444445, \"support\": 16.0}, \"2\": {\"precision\": 0.2, \"recall\": 0.14285714285714285, \"f1-score\": 0.16666666666666666, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.8181818181818182, \"recall\": 0.8181818181818182, \"f1-score\": 0.8181818181818182, \"support\": 11.0}, \"5\": {\"precision\": 0.6428571428571429, \"recall\": 0.75, \"f1-score\": 0.6923076923076924, \"support\": 12.0}, \"6\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.626984126984127, \"recall\": 0.626984126984127, \"f1-score\": 0.626984126984127, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.6786701166011511, \"recall\": 0.6672759339426005, \"f1-score\": 0.6630368461947409, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6608975042472579, \"recall\": 0.626984126984127, \"f1-score\": 0.6324104420595649, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.626984126984127, \"recall\": 0.626984126984127, \"f1-score\": 0.626984126984127, \"support\": 126.0}}", "eval_f1_macro": 66.3036846194741, "eval_f1_micro": 62.698412698412696, "eval_f1_weighted": 63.241044205956484, "eval_loss": 1.3940547704696655, "eval_runtime": 2.3682, "eval_samples_per_second": 53.206, "step": 1344 }, { "epoch": 85.0, "learning_rate": 0.00019166666666666665, "loss": 0.0239, "step": 1360 }, { "epoch": 85.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 66.91272896890874, "eval_classification_report": "{\"0\": {\"precision\": 0.66, \"recall\": 0.8461538461538461, \"f1-score\": 0.7415730337078651, \"support\": 39.0}, \"1\": {\"precision\": 0.5, \"recall\": 0.625, \"f1-score\": 0.5555555555555556, \"support\": 16.0}, \"2\": {\"precision\": 0.2727272727272727, \"recall\": 0.21428571428571427, \"f1-score\": 0.23999999999999996, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.6666666666666666, \"f1-score\": 0.7272727272727272, \"support\": 12.0}, \"6\": {\"precision\": 0.8333333333333334, \"recall\": 0.5555555555555556, \"f1-score\": 0.6666666666666667, \"support\": 9.0}, \"7\": {\"precision\": 0.6666666666666666, \"recall\": 0.5, \"f1-score\": 0.5714285714285715, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7268686868686869, \"recall\": 0.6547233630566964, \"f1-score\": 0.6809855756672235, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6787926887926888, \"recall\": 0.6666666666666666, \"f1-score\": 0.6621902497557929, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 68.09855756672235, "eval_f1_micro": 66.66666666666666, "eval_f1_weighted": 66.21902497557929, "eval_loss": 1.3899929523468018, "eval_runtime": 2.3048, "eval_samples_per_second": 54.669, "step": 1360 }, { "epoch": 86.0, "learning_rate": 0.00018999999999999998, "loss": 0.0216, "step": 1376 }, { "epoch": 86.0, "eval_accuracy": 69.84126984126983, "eval_average_metrics": 70.52532840960501, "eval_classification_report": "{\"0\": {\"precision\": 0.7272727272727273, \"recall\": 0.8205128205128205, \"f1-score\": 0.7710843373493976, \"support\": 39.0}, \"1\": {\"precision\": 0.8181818181818182, \"recall\": 0.5625, \"f1-score\": 0.6666666666666666, \"support\": 16.0}, \"2\": {\"precision\": 0.35, \"recall\": 0.5, \"f1-score\": 0.4117647058823529, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6153846153846154, \"recall\": 0.6666666666666666, \"f1-score\": 0.64, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.5714285714285714, \"recall\": 0.5, \"f1-score\": 0.5333333333333333, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6984126984126984, \"recall\": 0.6984126984126984, \"f1-score\": 0.6984126984126984, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7518176268176268, \"recall\": 0.7013673055339722, \"f1-score\": 0.719194675707787, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7279520083091512, \"recall\": 0.6984126984126984, \"f1-score\": 0.7049930638510167, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6984126984126984, \"recall\": 0.6984126984126984, \"f1-score\": 0.6984126984126984, \"support\": 126.0}}", "eval_f1_macro": 71.91946757077869, "eval_f1_micro": 69.84126984126983, "eval_f1_weighted": 70.49930638510166, "eval_loss": 1.4252502918243408, "eval_runtime": 2.2659, "eval_samples_per_second": 55.607, "step": 1376 }, { "epoch": 87.0, "learning_rate": 0.00018833333333333332, "loss": 0.0198, "step": 1392 }, { "epoch": 87.0, "eval_accuracy": 62.698412698412696, "eval_average_metrics": 64.19542416566226, "eval_classification_report": "{\"0\": {\"precision\": 0.7142857142857143, \"recall\": 0.6410256410256411, \"f1-score\": 0.6756756756756757, \"support\": 39.0}, \"1\": {\"precision\": 0.38461538461538464, \"recall\": 0.625, \"f1-score\": 0.4761904761904762, \"support\": 16.0}, \"2\": {\"precision\": 0.23076923076923078, \"recall\": 0.21428571428571427, \"f1-score\": 0.22222222222222224, \"support\": 14.0}, \"3\": {\"precision\": 0.7692307692307693, \"recall\": 0.6666666666666666, \"f1-score\": 0.7142857142857142, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 12.0}, \"6\": {\"precision\": 0.8571428571428571, \"recall\": 0.6666666666666666, \"f1-score\": 0.75, \"support\": 9.0}, \"7\": {\"precision\": 0.75, \"recall\": 0.75, \"f1-score\": 0.75, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.626984126984127, \"recall\": 0.626984126984127, \"f1-score\": 0.626984126984127, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.696967846967847, \"recall\": 0.672054797054797, \"f1-score\": 0.6791315124648458, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6539246467817896, \"recall\": 0.626984126984127, \"f1-score\": 0.6347172001933907, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.626984126984127, \"recall\": 0.626984126984127, \"f1-score\": 0.626984126984127, \"support\": 126.0}}", "eval_f1_macro": 67.91315124648459, "eval_f1_micro": 62.698412698412696, "eval_f1_weighted": 63.471720019339074, "eval_loss": 1.3790372610092163, "eval_runtime": 2.416, "eval_samples_per_second": 52.153, "step": 1392 }, { "epoch": 88.0, "learning_rate": 0.00018666666666666666, "loss": 0.0163, "step": 1408 }, { "epoch": 88.0, "eval_accuracy": 65.07936507936508, "eval_average_metrics": 66.3975197734596, "eval_classification_report": "{\"0\": {\"precision\": 0.7368421052631579, \"recall\": 0.717948717948718, \"f1-score\": 0.7272727272727273, \"support\": 39.0}, \"1\": {\"precision\": 0.45454545454545453, \"recall\": 0.625, \"f1-score\": 0.5263157894736842, \"support\": 16.0}, \"2\": {\"precision\": 0.2777777777777778, \"recall\": 0.35714285714285715, \"f1-score\": 0.31250000000000006, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 12.0}, \"6\": {\"precision\": 0.8571428571428571, \"recall\": 0.6666666666666666, \"f1-score\": 0.75, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6507936507936508, \"recall\": 0.6507936507936508, \"f1-score\": 0.6507936507936508, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7230289528535142, \"recall\": 0.6751785251785252, \"f1-score\": 0.6918405230247335, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6883097594877042, \"recall\": 0.6507936507936508, \"f1-score\": 0.6624729663263498, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6507936507936508, \"recall\": 0.6507936507936508, \"f1-score\": 0.6507936507936508, \"support\": 126.0}}", "eval_f1_macro": 69.18405230247335, "eval_f1_micro": 65.07936507936508, "eval_f1_weighted": 66.24729663263497, "eval_loss": 1.400413990020752, "eval_runtime": 2.7766, "eval_samples_per_second": 45.379, "step": 1408 }, { "epoch": 89.0, "learning_rate": 0.000185, "loss": 0.0252, "step": 1424 }, { "epoch": 89.0, "eval_accuracy": 69.84126984126983, "eval_average_metrics": 70.27870000024726, "eval_classification_report": "{\"0\": {\"precision\": 0.7045454545454546, \"recall\": 0.7948717948717948, \"f1-score\": 0.746987951807229, \"support\": 39.0}, \"1\": {\"precision\": 0.47619047619047616, \"recall\": 0.625, \"f1-score\": 0.5405405405405405, \"support\": 16.0}, \"2\": {\"precision\": 0.42857142857142855, \"recall\": 0.21428571428571427, \"f1-score\": 0.2857142857142857, \"support\": 14.0}, \"3\": {\"precision\": 0.9166666666666666, \"recall\": 0.7333333333333333, \"f1-score\": 0.8148148148148148, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.7777777777777778, \"recall\": 0.875, \"f1-score\": 0.823529411764706, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6984126984126984, \"recall\": 0.6984126984126984, \"f1-score\": 0.6984126984126984, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7386884720218053, \"recall\": 0.7227907894574561, \"f1-score\": 0.7236860340254309, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6981630362582744, \"recall\": 0.6984126984126984, \"f1-score\": 0.6906365691590625, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6984126984126984, \"recall\": 0.6984126984126984, \"f1-score\": 0.6984126984126984, \"support\": 126.0}}", "eval_f1_macro": 72.36860340254309, "eval_f1_micro": 69.84126984126983, "eval_f1_weighted": 69.06365691590625, "eval_loss": 1.4045358896255493, "eval_runtime": 2.261, "eval_samples_per_second": 55.729, "step": 1424 }, { "epoch": 90.0, "learning_rate": 0.00018333333333333334, "loss": 0.0213, "step": 1440 }, { "epoch": 90.0, "eval_accuracy": 68.25396825396825, "eval_average_metrics": 69.18004366242542, "eval_classification_report": "{\"0\": {\"precision\": 0.725, \"recall\": 0.7435897435897436, \"f1-score\": 0.7341772151898733, \"support\": 39.0}, \"1\": {\"precision\": 0.6428571428571429, \"recall\": 0.5625, \"f1-score\": 0.6000000000000001, \"support\": 16.0}, \"2\": {\"precision\": 0.35294117647058826, \"recall\": 0.42857142857142855, \"f1-score\": 0.3870967741935484, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.5714285714285714, \"recall\": 0.6666666666666666, \"f1-score\": 0.6153846153846153, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.5555555555555556, \"recall\": 0.625, \"f1-score\": 0.5882352941176471, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.726773807165964, \"recall\": 0.7088736880403547, \"f1-score\": 0.714082776552452, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7009114420178846, \"recall\": 0.6825396825396826, \"f1-score\": 0.6880396048651999, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}}", "eval_f1_macro": 71.4082776552452, "eval_f1_micro": 68.25396825396825, "eval_f1_weighted": 68.80396048651998, "eval_loss": 1.4070665836334229, "eval_runtime": 2.311, "eval_samples_per_second": 54.521, "step": 1440 }, { "epoch": 91.0, "learning_rate": 0.00018166666666666665, "loss": 0.0184, "step": 1456 }, { "epoch": 91.0, "eval_accuracy": 63.49206349206349, "eval_average_metrics": 64.54735564259373, "eval_classification_report": "{\"0\": {\"precision\": 0.7105263157894737, \"recall\": 0.6923076923076923, \"f1-score\": 0.7012987012987013, \"support\": 39.0}, \"1\": {\"precision\": 0.38461538461538464, \"recall\": 0.625, \"f1-score\": 0.4761904761904762, \"support\": 16.0}, \"2\": {\"precision\": 0.3, \"recall\": 0.21428571428571427, \"f1-score\": 0.25, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.5714285714285714, \"recall\": 0.6666666666666666, \"f1-score\": 0.6153846153846153, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6349206349206349, \"recall\": 0.6349206349206349, \"f1-score\": 0.6349206349206349, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.6954037515441025, \"recall\": 0.6688021854688522, \"f1-score\": 0.6738290104956772, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6590142939767001, \"recall\": 0.6349206349206349, \"f1-score\": 0.6382239453668025, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6349206349206349, \"recall\": 0.6349206349206349, \"f1-score\": 0.6349206349206349, \"support\": 126.0}}", "eval_f1_macro": 67.38290104956772, "eval_f1_micro": 63.49206349206349, "eval_f1_weighted": 63.82239453668025, "eval_loss": 1.409493327140808, "eval_runtime": 2.2475, "eval_samples_per_second": 56.063, "step": 1456 }, { "epoch": 92.0, "learning_rate": 0.00017999999999999998, "loss": 0.0126, "step": 1472 }, { "epoch": 92.0, "eval_accuracy": 65.87301587301587, "eval_average_metrics": 66.83564358441942, "eval_classification_report": "{\"0\": {\"precision\": 0.725, \"recall\": 0.7435897435897436, \"f1-score\": 0.7341772151898733, \"support\": 39.0}, \"1\": {\"precision\": 0.47619047619047616, \"recall\": 0.625, \"f1-score\": 0.5405405405405405, \"support\": 16.0}, \"2\": {\"precision\": 0.25, \"recall\": 0.21428571428571427, \"f1-score\": 0.23076923076923075, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6153846153846154, \"recall\": 0.6666666666666666, \"f1-score\": 0.64, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.664, \"recall\": 0.6587301587301587, \"f1-score\": 0.6613545816733067, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7075254991921658, \"recall\": 0.6819075985742652, \"f1-score\": 0.6907005619241906, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6748358123358124, \"recall\": 0.6587301587301587, \"f1-score\": 0.6626404410491209, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}}", "eval_f1_macro": 69.07005619241906, "eval_f1_micro": 66.13545816733067, "eval_f1_weighted": 66.26404410491209, "eval_loss": 1.3618754148483276, "eval_runtime": 2.3188, "eval_samples_per_second": 54.338, "step": 1472 }, { "epoch": 93.0, "learning_rate": 0.00017833333333333332, "loss": 0.0272, "step": 1488 }, { "epoch": 93.0, "eval_accuracy": 64.28571428571429, "eval_average_metrics": 65.13621632967421, "eval_classification_report": "{\"0\": {\"precision\": 0.6976744186046512, \"recall\": 0.7692307692307693, \"f1-score\": 0.7317073170731708, \"support\": 39.0}, \"1\": {\"precision\": 0.4166666666666667, \"recall\": 0.625, \"f1-score\": 0.5, \"support\": 16.0}, \"2\": {\"precision\": 0.2727272727272727, \"recall\": 0.21428571428571427, \"f1-score\": 0.23999999999999996, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 12.0}, \"6\": {\"precision\": 0.8571428571428571, \"recall\": 0.6666666666666666, \"f1-score\": 0.75, \"support\": 9.0}, \"7\": {\"precision\": 0.6666666666666666, \"recall\": 0.5, \"f1-score\": 0.5714285714285715, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.648, \"recall\": 0.6428571428571429, \"f1-score\": 0.6454183266932271, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7086160609416423, \"recall\": 0.6511146261146261, \"f1-score\": 0.6707717124790296, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6677918242702295, \"recall\": 0.6428571428571429, \"f1-score\": 0.6464014711575687, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}}", "eval_f1_macro": 67.07717124790295, "eval_f1_micro": 64.5418326693227, "eval_f1_weighted": 64.64014711575687, "eval_loss": 1.4013030529022217, "eval_runtime": 1.8004, "eval_samples_per_second": 69.984, "step": 1488 }, { "epoch": 94.0, "learning_rate": 0.00017666666666666666, "loss": 0.0176, "step": 1504 }, { "epoch": 94.0, "eval_accuracy": 65.07936507936508, "eval_average_metrics": 66.24085245918548, "eval_classification_report": "{\"0\": {\"precision\": 0.7105263157894737, \"recall\": 0.6923076923076923, \"f1-score\": 0.7012987012987013, \"support\": 39.0}, \"1\": {\"precision\": 0.43478260869565216, \"recall\": 0.625, \"f1-score\": 0.5128205128205128, \"support\": 16.0}, \"2\": {\"precision\": 0.2727272727272727, \"recall\": 0.21428571428571427, \"f1-score\": 0.23999999999999996, \"support\": 14.0}, \"3\": {\"precision\": 0.9166666666666666, \"recall\": 0.7333333333333333, \"f1-score\": 0.8148148148148148, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6153846153846154, \"recall\": 0.6666666666666666, \"f1-score\": 0.64, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.656, \"recall\": 0.6507936507936508, \"f1-score\": 0.653386454183267, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7046834412585747, \"recall\": 0.6836170002836669, \"f1-score\": 0.6900579256134812, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6685248489841494, \"recall\": 0.6507936507936508, \"f1-score\": 0.6553960677770201, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6507936507936508, \"recall\": 0.6507936507936508, \"f1-score\": 0.6507936507936508, \"support\": 126.0}}", "eval_f1_macro": 69.00579256134812, "eval_f1_micro": 65.3386454183267, "eval_f1_weighted": 65.539606777702, "eval_loss": 1.3731693029403687, "eval_runtime": 2.3164, "eval_samples_per_second": 54.395, "step": 1504 }, { "epoch": 95.0, "learning_rate": 0.000175, "loss": 0.0197, "step": 1520 }, { "epoch": 95.0, "eval_accuracy": 64.28571428571429, "eval_average_metrics": 65.63098453843982, "eval_classification_report": "{\"0\": {\"precision\": 0.675, \"recall\": 0.6923076923076923, \"f1-score\": 0.6835443037974683, \"support\": 39.0}, \"1\": {\"precision\": 0.45454545454545453, \"recall\": 0.625, \"f1-score\": 0.5263157894736842, \"support\": 16.0}, \"2\": {\"precision\": 0.23076923076923078, \"recall\": 0.21428571428571427, \"f1-score\": 0.22222222222222224, \"support\": 14.0}, \"3\": {\"precision\": 0.8461538461538461, \"recall\": 0.7333333333333333, \"f1-score\": 0.7857142857142856, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.7272727272727273, \"recall\": 0.6666666666666666, \"f1-score\": 0.6956521739130435, \"support\": 12.0}, \"6\": {\"precision\": 0.8571428571428571, \"recall\": 0.6666666666666666, \"f1-score\": 0.75, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.648, \"recall\": 0.6428571428571429, \"f1-score\": 0.6454183266932271, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7116855366855367, \"recall\": 0.6712713212713213, \"f1-score\": 0.6874731443255809, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6633067329495902, \"recall\": 0.6428571428571429, \"f1-score\": 0.649490767661642, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}}", "eval_f1_macro": 68.7473144325581, "eval_f1_micro": 64.5418326693227, "eval_f1_weighted": 64.94907676616421, "eval_loss": 1.3526192903518677, "eval_runtime": 2.5971, "eval_samples_per_second": 48.515, "step": 1520 }, { "epoch": 96.0, "learning_rate": 0.0001733333333333333, "loss": 0.0169, "step": 1536 }, { "epoch": 96.0, "eval_accuracy": 65.87301587301587, "eval_average_metrics": 66.56130072998315, "eval_classification_report": "{\"0\": {\"precision\": 0.6888888888888889, \"recall\": 0.7948717948717948, \"f1-score\": 0.738095238095238, \"support\": 39.0}, \"1\": {\"precision\": 0.5, \"recall\": 0.625, \"f1-score\": 0.5555555555555556, \"support\": 16.0}, \"2\": {\"precision\": 0.25, \"recall\": 0.21428571428571427, \"f1-score\": 0.23076923076923075, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 12.0}, \"6\": {\"precision\": 0.8571428571428571, \"recall\": 0.6666666666666666, \"f1-score\": 0.75, \"support\": 9.0}, \"7\": {\"precision\": 0.6666666666666666, \"recall\": 0.5, \"f1-score\": 0.5714285714285715, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.664, \"recall\": 0.6587301587301587, \"f1-score\": 0.6613545816733067, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.715383998717332, \"recall\": 0.6613710363710363, \"f1-score\": 0.6820987654320988, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6742115027829313, \"recall\": 0.6587301587301587, \"f1-score\": 0.6602685233637615, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}}", "eval_f1_macro": 68.20987654320987, "eval_f1_micro": 66.13545816733067, "eval_f1_weighted": 66.02685233637615, "eval_loss": 1.3608485460281372, "eval_runtime": 2.6437, "eval_samples_per_second": 47.66, "step": 1536 }, { "epoch": 97.0, "learning_rate": 0.00017166666666666665, "loss": 0.0181, "step": 1552 }, { "epoch": 97.0, "eval_accuracy": 67.46031746031747, "eval_average_metrics": 68.9244882625259, "eval_classification_report": "{\"0\": {\"precision\": 0.7575757575757576, \"recall\": 0.6410256410256411, \"f1-score\": 0.6944444444444444, \"support\": 39.0}, \"1\": {\"precision\": 0.47619047619047616, \"recall\": 0.625, \"f1-score\": 0.5405405405405405, \"support\": 16.0}, \"2\": {\"precision\": 0.35294117647058826, \"recall\": 0.42857142857142855, \"f1-score\": 0.3870967741935484, \"support\": 14.0}, \"3\": {\"precision\": 0.7857142857142857, \"recall\": 0.7333333333333333, \"f1-score\": 0.7586206896551724, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.6428571428571429, \"recall\": 0.75, \"f1-score\": 0.6923076923076924, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7376283846872081, \"recall\": 0.7210887877554544, \"f1-score\": 0.7248630796554415, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7009520980109216, \"recall\": 0.6746031746031746, \"f1-score\": 0.682910101639245, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}}", "eval_f1_macro": 72.48630796554416, "eval_f1_micro": 67.46031746031747, "eval_f1_weighted": 68.2910101639245, "eval_loss": 1.3483365774154663, "eval_runtime": 2.2513, "eval_samples_per_second": 55.967, "step": 1552 }, { "epoch": 98.0, "learning_rate": 0.00016999999999999999, "loss": 0.0175, "step": 1568 }, { "epoch": 98.0, "eval_accuracy": 67.46031746031747, "eval_average_metrics": 67.70579717830908, "eval_classification_report": "{\"0\": {\"precision\": 0.7272727272727273, \"recall\": 0.8205128205128205, \"f1-score\": 0.7710843373493976, \"support\": 39.0}, \"1\": {\"precision\": 0.5, \"recall\": 0.625, \"f1-score\": 0.5555555555555556, \"support\": 16.0}, \"2\": {\"precision\": 0.2727272727272727, \"recall\": 0.21428571428571427, \"f1-score\": 0.23999999999999996, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6428571428571429, \"recall\": 0.75, \"f1-score\": 0.6923076923076924, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.5714285714285714, \"recall\": 0.5, \"f1-score\": 0.5333333333333333, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.709920634920635, \"recall\": 0.6784175700842368, \"f1-score\": 0.6881059097170602, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6804962894248607, \"recall\": 0.6746031746031746, \"f1-score\": 0.6709196282089537, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}}", "eval_f1_macro": 68.81059097170602, "eval_f1_micro": 67.46031746031747, "eval_f1_weighted": 67.09196282089536, "eval_loss": 1.4122201204299927, "eval_runtime": 2.2845, "eval_samples_per_second": 55.154, "step": 1568 }, { "epoch": 99.0, "learning_rate": 0.00016833333333333332, "loss": 0.0128, "step": 1584 }, { "epoch": 99.0, "eval_accuracy": 65.07936507936508, "eval_average_metrics": 65.97330776730362, "eval_classification_report": "{\"0\": {\"precision\": 0.717948717948718, \"recall\": 0.717948717948718, \"f1-score\": 0.717948717948718, \"support\": 39.0}, \"1\": {\"precision\": 0.38461538461538464, \"recall\": 0.625, \"f1-score\": 0.4761904761904762, \"support\": 16.0}, \"2\": {\"precision\": 0.3333333333333333, \"recall\": 0.21428571428571427, \"f1-score\": 0.2608695652173913, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6428571428571429, \"recall\": 0.75, \"f1-score\": 0.6923076923076924, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6507936507936508, \"recall\": 0.6507936507936508, \"f1-score\": 0.6507936507936508, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7078686745353413, \"recall\": 0.6809104475771143, \"f1-score\": 0.6854337503612866, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.671818128960986, \"recall\": 0.6507936507936508, \"f1-score\": 0.6519112587435569, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6507936507936508, \"recall\": 0.6507936507936508, \"f1-score\": 0.6507936507936508, \"support\": 126.0}}", "eval_f1_macro": 68.54337503612867, "eval_f1_micro": 65.07936507936508, "eval_f1_weighted": 65.19112587435569, "eval_loss": 1.3738839626312256, "eval_runtime": 2.3162, "eval_samples_per_second": 54.399, "step": 1584 }, { "epoch": 100.0, "learning_rate": 0.00016666666666666666, "loss": 0.014, "step": 1600 }, { "epoch": 100.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 67.52344788517064, "eval_classification_report": "{\"0\": {\"precision\": 0.725, \"recall\": 0.7435897435897436, \"f1-score\": 0.7341772151898733, \"support\": 39.0}, \"1\": {\"precision\": 0.5, \"recall\": 0.625, \"f1-score\": 0.5555555555555556, \"support\": 16.0}, \"2\": {\"precision\": 0.23076923076923078, \"recall\": 0.21428571428571427, \"f1-score\": 0.22222222222222224, \"support\": 14.0}, \"3\": {\"precision\": 0.8333333333333334, \"recall\": 0.6666666666666666, \"f1-score\": 0.7407407407407408, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6428571428571429, \"recall\": 0.75, \"f1-score\": 0.6923076923076924, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7134717134717135, \"recall\": 0.6911668578335246, \"f1-score\": 0.6991491512878127, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6762646084074655, \"recall\": 0.6666666666666666, \"f1-score\": 0.6684554307856793, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 69.91491512878127, "eval_f1_micro": 66.66666666666666, "eval_f1_weighted": 66.84554307856793, "eval_loss": 1.3619627952575684, "eval_runtime": 2.2504, "eval_samples_per_second": 55.989, "step": 1600 }, { "epoch": 101.0, "learning_rate": 0.000165, "loss": 0.02, "step": 1616 }, { "epoch": 101.0, "eval_accuracy": 68.25396825396825, "eval_average_metrics": 68.62123430410468, "eval_classification_report": "{\"0\": {\"precision\": 0.7380952380952381, \"recall\": 0.7948717948717948, \"f1-score\": 0.7654320987654322, \"support\": 39.0}, \"1\": {\"precision\": 0.5625, \"recall\": 0.5625, \"f1-score\": 0.5625, \"support\": 16.0}, \"2\": {\"precision\": 0.25, \"recall\": 0.21428571428571427, \"f1-score\": 0.23076923076923075, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.625, \"recall\": 0.8333333333333334, \"f1-score\": 0.7142857142857143, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7097182138848805, \"recall\": 0.6991796783463449, \"f1-score\": 0.700237605330198, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6850958565244281, \"recall\": 0.6825396825396826, \"f1-score\": 0.6795324017546239, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}}", "eval_f1_macro": 70.0237605330198, "eval_f1_micro": 68.25396825396825, "eval_f1_weighted": 67.9532401754624, "eval_loss": 1.4177024364471436, "eval_runtime": 2.2957, "eval_samples_per_second": 54.885, "step": 1616 }, { "epoch": 102.0, "learning_rate": 0.0001633333333333333, "loss": 0.0167, "step": 1632 }, { "epoch": 102.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 67.97038753773114, "eval_classification_report": "{\"0\": {\"precision\": 0.75, \"recall\": 0.6923076923076923, \"f1-score\": 0.7199999999999999, \"support\": 39.0}, \"1\": {\"precision\": 0.5263157894736842, \"recall\": 0.625, \"f1-score\": 0.5714285714285714, \"support\": 16.0}, \"2\": {\"precision\": 0.2777777777777778, \"recall\": 0.35714285714285715, \"f1-score\": 0.31250000000000006, \"support\": 14.0}, \"3\": {\"precision\": 0.8333333333333334, \"recall\": 0.6666666666666666, \"f1-score\": 0.7407407407407408, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6428571428571429, \"recall\": 0.75, \"f1-score\": 0.6923076923076924, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7243966397475169, \"recall\": 0.7013418680085347, \"f1-score\": 0.7093684377834705, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6925675630876132, \"recall\": 0.6666666666666666, \"f1-score\": 0.6761137303924419, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 70.93684377834705, "eval_f1_micro": 66.66666666666666, "eval_f1_weighted": 67.6113730392442, "eval_loss": 1.408689260482788, "eval_runtime": 2.2504, "eval_samples_per_second": 55.989, "step": 1632 }, { "epoch": 103.0, "learning_rate": 0.00016166666666666665, "loss": 0.0195, "step": 1648 }, { "epoch": 103.0, "eval_accuracy": 65.87301587301587, "eval_average_metrics": 66.68630872331818, "eval_classification_report": "{\"0\": {\"precision\": 0.7073170731707317, \"recall\": 0.7435897435897436, \"f1-score\": 0.725, \"support\": 39.0}, \"1\": {\"precision\": 0.4, \"recall\": 0.625, \"f1-score\": 0.48780487804878053, \"support\": 16.0}, \"2\": {\"precision\": 0.3, \"recall\": 0.21428571428571427, \"f1-score\": 0.25, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.6923076923076923, \"recall\": 0.75, \"f1-score\": 0.7199999999999999, \"support\": 12.0}, \"6\": {\"precision\": 0.8, \"recall\": 0.8888888888888888, \"f1-score\": 0.8421052631578948, \"support\": 9.0}, \"7\": {\"precision\": 0.6666666666666666, \"recall\": 0.5, \"f1-score\": 0.5714285714285715, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.718476825793899, \"recall\": 0.682216240549574, \"f1-score\": 0.6907043014039164, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6787808848784459, \"recall\": 0.6587301587301587, \"f1-score\": 0.6592877300684928, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}}", "eval_f1_macro": 69.07043014039164, "eval_f1_micro": 65.87301587301587, "eval_f1_weighted": 65.92877300684928, "eval_loss": 1.423905372619629, "eval_runtime": 2.1676, "eval_samples_per_second": 58.129, "step": 1648 }, { "epoch": 104.0, "learning_rate": 0.00015999999999999999, "loss": 0.016, "step": 1664 }, { "epoch": 104.0, "eval_accuracy": 67.46031746031747, "eval_average_metrics": 68.96367774209097, "eval_classification_report": "{\"0\": {\"precision\": 0.7647058823529411, \"recall\": 0.6666666666666666, \"f1-score\": 0.7123287671232877, \"support\": 39.0}, \"1\": {\"precision\": 0.5294117647058824, \"recall\": 0.5625, \"f1-score\": 0.5454545454545455, \"support\": 16.0}, \"2\": {\"precision\": 0.38095238095238093, \"recall\": 0.5714285714285714, \"f1-score\": 0.4571428571428571, \"support\": 14.0}, \"3\": {\"precision\": 0.8333333333333334, \"recall\": 0.6666666666666666, \"f1-score\": 0.7407407407407408, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6923076923076923, \"recall\": 0.75, \"f1-score\": 0.7199999999999999, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.68, \"recall\": 0.6746031746031746, \"f1-score\": 0.6772908366533866, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7334123392946922, \"recall\": 0.7153579445246111, \"f1-score\": 0.720148797707666, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7080170102228924, \"recall\": 0.6746031746031746, \"f1-score\": 0.6865043007194115, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}}", "eval_f1_macro": 72.0148797707666, "eval_f1_micro": 67.72908366533866, "eval_f1_weighted": 68.65043007194114, "eval_loss": 1.4154331684112549, "eval_runtime": 2.4507, "eval_samples_per_second": 51.413, "step": 1664 }, { "epoch": 105.0, "learning_rate": 0.00015833333333333332, "loss": 0.023, "step": 1680 }, { "epoch": 105.0, "eval_accuracy": 67.46031746031747, "eval_average_metrics": 67.72173315398248, "eval_classification_report": "{\"0\": {\"precision\": 0.7209302325581395, \"recall\": 0.7948717948717948, \"f1-score\": 0.7560975609756098, \"support\": 39.0}, \"1\": {\"precision\": 0.47619047619047616, \"recall\": 0.625, \"f1-score\": 0.5405405405405405, \"support\": 16.0}, \"2\": {\"precision\": 0.3, \"recall\": 0.21428571428571427, \"f1-score\": 0.25, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6666666666666666, \"recall\": 0.8333333333333334, \"f1-score\": 0.7407407407407408, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.6666666666666666, \"recall\": 0.5, \"f1-score\": 0.5714285714285715, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7120257577621918, \"recall\": 0.6848278264944931, \"f1-score\": 0.6904142276228998, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6799100001757808, \"recall\": 0.6746031746031746, \"f1-score\": 0.6692487493300502, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}}", "eval_f1_macro": 69.04142276228998, "eval_f1_micro": 67.46031746031747, "eval_f1_weighted": 66.92487493300501, "eval_loss": 1.3903635740280151, "eval_runtime": 2.5307, "eval_samples_per_second": 49.788, "step": 1680 }, { "epoch": 106.0, "learning_rate": 0.00015666666666666666, "loss": 0.0138, "step": 1696 }, { "epoch": 106.0, "eval_accuracy": 65.07936507936508, "eval_average_metrics": 66.29451627394252, "eval_classification_report": "{\"0\": {\"precision\": 0.7777777777777778, \"recall\": 0.717948717948718, \"f1-score\": 0.7466666666666666, \"support\": 39.0}, \"1\": {\"precision\": 0.38461538461538464, \"recall\": 0.625, \"f1-score\": 0.4761904761904762, \"support\": 16.0}, \"2\": {\"precision\": 0.26666666666666666, \"recall\": 0.2857142857142857, \"f1-score\": 0.2758620689655172, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6923076923076923, \"recall\": 0.75, \"f1-score\": 0.7199999999999999, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.6666666666666666, \"recall\": 0.5, \"f1-score\": 0.5714285714285715, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6507936507936508, \"recall\": 0.6507936507936508, \"f1-score\": 0.6507936507936508, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7181149097815764, \"recall\": 0.6749580666247333, \"f1-score\": 0.6878688946843105, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.691559829059829, \"recall\": 0.6507936507936508, \"f1-score\": 0.6623244546860889, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6507936507936508, \"recall\": 0.6507936507936508, \"f1-score\": 0.6507936507936508, \"support\": 126.0}}", "eval_f1_macro": 68.78688946843104, "eval_f1_micro": 65.07936507936508, "eval_f1_weighted": 66.23244546860889, "eval_loss": 1.4107484817504883, "eval_runtime": 2.6458, "eval_samples_per_second": 47.622, "step": 1696 }, { "epoch": 107.0, "learning_rate": 0.000155, "loss": 0.0088, "step": 1712 }, { "epoch": 107.0, "eval_accuracy": 67.46031746031747, "eval_average_metrics": 68.03483976686591, "eval_classification_report": "{\"0\": {\"precision\": 0.7142857142857143, \"recall\": 0.7692307692307693, \"f1-score\": 0.7407407407407408, \"support\": 39.0}, \"1\": {\"precision\": 0.5, \"recall\": 0.625, \"f1-score\": 0.5555555555555556, \"support\": 16.0}, \"2\": {\"precision\": 0.25, \"recall\": 0.21428571428571427, \"f1-score\": 0.23076923076923075, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6666666666666666, \"recall\": 0.8333333333333334, \"f1-score\": 0.7407407407407408, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.6666666666666666, \"recall\": 0.5, \"f1-score\": 0.5714285714285715, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7201899951899953, \"recall\": 0.6893862310528976, \"f1-score\": 0.698793097485908, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6833479351336494, \"recall\": 0.6746031746031746, \"f1-score\": 0.6733941439823793, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}}", "eval_f1_macro": 69.8793097485908, "eval_f1_micro": 67.46031746031747, "eval_f1_weighted": 67.33941439823793, "eval_loss": 1.3881994485855103, "eval_runtime": 2.2637, "eval_samples_per_second": 55.661, "step": 1712 }, { "epoch": 108.0, "learning_rate": 0.0001533333333333333, "loss": 0.0133, "step": 1728 }, { "epoch": 108.0, "eval_accuracy": 65.87301587301587, "eval_average_metrics": 66.95371943449246, "eval_classification_report": "{\"0\": {\"precision\": 0.7297297297297297, \"recall\": 0.6923076923076923, \"f1-score\": 0.7105263157894737, \"support\": 39.0}, \"1\": {\"precision\": 0.45454545454545453, \"recall\": 0.625, \"f1-score\": 0.5263157894736842, \"support\": 16.0}, \"2\": {\"precision\": 0.23076923076923078, \"recall\": 0.21428571428571427, \"f1-score\": 0.22222222222222224, \"support\": 14.0}, \"3\": {\"precision\": 0.8333333333333334, \"recall\": 0.6666666666666666, \"f1-score\": 0.7407407407407408, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6666666666666666, \"recall\": 0.8333333333333334, \"f1-score\": 0.7407407407407408, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7115922365922365, \"recall\": 0.694728111394778, \"f1-score\": 0.6986538605045658, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6742241402955689, \"recall\": 0.6587301587301587, \"f1-score\": 0.6620345994148147, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}}", "eval_f1_macro": 69.86538605045658, "eval_f1_micro": 65.87301587301587, "eval_f1_weighted": 66.20345994148147, "eval_loss": 1.4304180145263672, "eval_runtime": 1.7714, "eval_samples_per_second": 71.129, "step": 1728 }, { "epoch": 109.0, "learning_rate": 0.00015166666666666665, "loss": 0.0121, "step": 1744 }, { "epoch": 109.0, "eval_accuracy": 68.25396825396825, "eval_average_metrics": 68.81854424312846, "eval_classification_report": "{\"0\": {\"precision\": 0.7045454545454546, \"recall\": 0.7948717948717948, \"f1-score\": 0.746987951807229, \"support\": 39.0}, \"1\": {\"precision\": 0.6923076923076923, \"recall\": 0.5625, \"f1-score\": 0.6206896551724138, \"support\": 16.0}, \"2\": {\"precision\": 0.21428571428571427, \"recall\": 0.21428571428571427, \"f1-score\": 0.21428571428571427, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6666666666666666, \"recall\": 0.8333333333333334, \"f1-score\": 0.7407407407407408, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7210749127415794, \"recall\": 0.6991796783463449, \"f1-score\": 0.7057617184619447, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6911949161949162, \"recall\": 0.6825396825396826, \"f1-score\": 0.6819006861838286, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}}", "eval_f1_macro": 70.57617184619447, "eval_f1_micro": 68.25396825396825, "eval_f1_weighted": 68.19006861838287, "eval_loss": 1.4938815832138062, "eval_runtime": 2.2653, "eval_samples_per_second": 55.622, "step": 1744 }, { "epoch": 110.0, "learning_rate": 0.00015, "loss": 0.0163, "step": 1760 }, { "epoch": 110.0, "eval_accuracy": 67.46031746031747, "eval_average_metrics": 68.4474015628923, "eval_classification_report": "{\"0\": {\"precision\": 0.7272727272727273, \"recall\": 0.8205128205128205, \"f1-score\": 0.7710843373493976, \"support\": 39.0}, \"1\": {\"precision\": 0.37037037037037035, \"recall\": 0.625, \"f1-score\": 0.4651162790697674, \"support\": 16.0}, \"2\": {\"precision\": 0.3333333333333333, \"recall\": 0.21428571428571427, \"f1-score\": 0.2608695652173913, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.75, \"f1-score\": 0.8571428571428571, \"support\": 12.0}, \"6\": {\"precision\": 0.8571428571428571, \"recall\": 0.6666666666666666, \"f1-score\": 0.75, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.68, \"recall\": 0.6746031746031746, \"f1-score\": 0.6772908366533866, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7558227780450003, \"recall\": 0.67996077996078, \"f1-score\": 0.7053358402876597, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.712577780831749, \"recall\": 0.6746031746031746, \"f1-score\": 0.6806662109714708, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}}", "eval_f1_macro": 70.53358402876597, "eval_f1_micro": 67.72908366533866, "eval_f1_weighted": 68.06662109714708, "eval_loss": 1.4883121252059937, "eval_runtime": 2.3038, "eval_samples_per_second": 54.691, "step": 1760 }, { "epoch": 111.0, "learning_rate": 0.00014833333333333332, "loss": 0.0121, "step": 1776 }, { "epoch": 111.0, "eval_accuracy": 65.07936507936508, "eval_average_metrics": 66.47991164140366, "eval_classification_report": "{\"0\": {\"precision\": 0.7647058823529411, \"recall\": 0.6666666666666666, \"f1-score\": 0.7123287671232877, \"support\": 39.0}, \"1\": {\"precision\": 0.4166666666666667, \"recall\": 0.625, \"f1-score\": 0.5, \"support\": 16.0}, \"2\": {\"precision\": 0.23076923076923078, \"recall\": 0.21428571428571427, \"f1-score\": 0.22222222222222224, \"support\": 14.0}, \"3\": {\"precision\": 0.7857142857142857, \"recall\": 0.7333333333333333, \"f1-score\": 0.7586206896551724, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6923076923076923, \"recall\": 0.75, \"f1-score\": 0.7199999999999999, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.656, \"recall\": 0.6507936507936508, \"f1-score\": 0.653386454183267, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7088277191218368, \"recall\": 0.6900272566939233, \"f1-score\": 0.6956122905083235, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6770131556896263, \"recall\": 0.6507936507936508, \"f1-score\": 0.6594040701709051, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6507936507936508, \"recall\": 0.6507936507936508, \"f1-score\": 0.6507936507936508, \"support\": 126.0}}", "eval_f1_macro": 69.56122905083235, "eval_f1_micro": 65.3386454183267, "eval_f1_weighted": 65.94040701709051, "eval_loss": 1.4863680601119995, "eval_runtime": 2.2627, "eval_samples_per_second": 55.686, "step": 1776 }, { "epoch": 112.0, "learning_rate": 0.00014666666666666664, "loss": 0.0099, "step": 1792 }, { "epoch": 112.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 67.8944064021318, "eval_classification_report": "{\"0\": {\"precision\": 0.75, \"recall\": 0.7692307692307693, \"f1-score\": 0.7594936708860761, \"support\": 39.0}, \"1\": {\"precision\": 0.47619047619047616, \"recall\": 0.625, \"f1-score\": 0.5405405405405405, \"support\": 16.0}, \"2\": {\"precision\": 0.23529411764705882, \"recall\": 0.2857142857142857, \"f1-score\": 0.2580645161290323, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.8, \"recall\": 0.6666666666666666, \"f1-score\": 0.7272727272727272, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.6666666666666666, \"recall\": 0.5, \"f1-score\": 0.5714285714285715, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.672, \"recall\": 0.6666666666666666, \"f1-score\": 0.6693227091633466, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7346935743994568, \"recall\": 0.6788042204708871, \"f1-score\": 0.7007447849328089, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7024433510778048, \"recall\": 0.6666666666666666, \"f1-score\": 0.67904209532245, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 70.07447849328089, "eval_f1_micro": 66.93227091633466, "eval_f1_weighted": 67.90420953224499, "eval_loss": 1.512426495552063, "eval_runtime": 1.9424, "eval_samples_per_second": 64.869, "step": 1792 }, { "epoch": 113.0, "learning_rate": 0.000145, "loss": 0.0103, "step": 1808 }, { "epoch": 113.0, "eval_accuracy": 69.04761904761905, "eval_average_metrics": 69.88719086284941, "eval_classification_report": "{\"0\": {\"precision\": 0.7619047619047619, \"recall\": 0.8205128205128205, \"f1-score\": 0.7901234567901233, \"support\": 39.0}, \"1\": {\"precision\": 0.5882352941176471, \"recall\": 0.625, \"f1-score\": 0.6060606060606061, \"support\": 16.0}, \"2\": {\"precision\": 0.3157894736842105, \"recall\": 0.42857142857142855, \"f1-score\": 0.36363636363636365, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.7272727272727273, \"recall\": 0.6666666666666666, \"f1-score\": 0.6956521739130435, \"support\": 12.0}, \"6\": {\"precision\": 0.8571428571428571, \"recall\": 0.6666666666666666, \"f1-score\": 0.75, \"support\": 9.0}, \"7\": {\"precision\": 0.6666666666666666, \"recall\": 0.5, \"f1-score\": 0.5714285714285715, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.696, \"recall\": 0.6904761904761905, \"f1-score\": 0.6932270916334661, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7473447433199755, \"recall\": 0.688029563029563, \"f1-score\": 0.7114749775780371, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7210980830397017, \"recall\": 0.6904761904761905, \"f1-score\": 0.700309374826283, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6904761904761905, \"recall\": 0.6904761904761905, \"f1-score\": 0.6904761904761905, \"support\": 126.0}}", "eval_f1_macro": 71.1474977578037, "eval_f1_micro": 69.3227091633466, "eval_f1_weighted": 70.0309374826283, "eval_loss": 1.531253695487976, "eval_runtime": 2.0366, "eval_samples_per_second": 61.868, "step": 1808 }, { "epoch": 114.0, "learning_rate": 0.00014333333333333334, "loss": 0.0129, "step": 1824 }, { "epoch": 114.0, "eval_accuracy": 63.49206349206349, "eval_average_metrics": 64.47568233916209, "eval_classification_report": "{\"0\": {\"precision\": 0.6904761904761905, \"recall\": 0.7435897435897436, \"f1-score\": 0.7160493827160495, \"support\": 39.0}, \"1\": {\"precision\": 0.37037037037037035, \"recall\": 0.625, \"f1-score\": 0.4651162790697674, \"support\": 16.0}, \"2\": {\"precision\": 0.2727272727272727, \"recall\": 0.21428571428571427, \"f1-score\": 0.23999999999999996, \"support\": 14.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.6, \"f1-score\": 0.7499999999999999, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 12.0}, \"6\": {\"precision\": 0.8571428571428571, \"recall\": 0.6666666666666666, \"f1-score\": 0.75, \"support\": 9.0}, \"7\": {\"precision\": 0.6666666666666666, \"recall\": 0.5, \"f1-score\": 0.5714285714285715, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6349206349206349, \"recall\": 0.6349206349206349, \"f1-score\": 0.6349206349206349, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7137833360055582, \"recall\": 0.6482656232656232, \"f1-score\": 0.6684893063359902, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6715896684150652, \"recall\": 0.6349206349206349, \"f1-score\": 0.6406967173892238, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6349206349206349, \"recall\": 0.6349206349206349, \"f1-score\": 0.6349206349206349, \"support\": 126.0}}", "eval_f1_macro": 66.84893063359902, "eval_f1_micro": 63.49206349206349, "eval_f1_weighted": 64.06967173892238, "eval_loss": 1.5468316078186035, "eval_runtime": 2.0676, "eval_samples_per_second": 60.941, "step": 1824 }, { "epoch": 115.0, "learning_rate": 0.00014166666666666665, "loss": 0.0072, "step": 1840 }, { "epoch": 115.0, "eval_accuracy": 64.28571428571429, "eval_average_metrics": 65.12704817699438, "eval_classification_report": "{\"0\": {\"precision\": 0.7073170731707317, \"recall\": 0.7435897435897436, \"f1-score\": 0.725, \"support\": 39.0}, \"1\": {\"precision\": 0.4, \"recall\": 0.625, \"f1-score\": 0.48780487804878053, \"support\": 16.0}, \"2\": {\"precision\": 0.2727272727272727, \"recall\": 0.21428571428571427, \"f1-score\": 0.23999999999999996, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6153846153846154, \"recall\": 0.6666666666666666, \"f1-score\": 0.64, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.6666666666666666, \"recall\": 0.5, \"f1-score\": 0.5714285714285715, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7041217364388097, \"recall\": 0.6606113022779689, \"f1-score\": 0.6738784131538795, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6650515586491196, \"recall\": 0.6428571428571429, \"f1-score\": 0.6454892282116098, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}}", "eval_f1_macro": 67.38784131538796, "eval_f1_micro": 64.28571428571429, "eval_f1_weighted": 64.54892282116099, "eval_loss": 1.5366556644439697, "eval_runtime": 2.0606, "eval_samples_per_second": 61.147, "step": 1840 }, { "epoch": 116.0, "learning_rate": 0.00014, "loss": 0.0137, "step": 1856 }, { "epoch": 116.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 67.94095606385523, "eval_classification_report": "{\"0\": {\"precision\": 0.7368421052631579, \"recall\": 0.717948717948718, \"f1-score\": 0.7272727272727273, \"support\": 39.0}, \"1\": {\"precision\": 0.5263157894736842, \"recall\": 0.625, \"f1-score\": 0.5714285714285714, \"support\": 16.0}, \"2\": {\"precision\": 0.2777777777777778, \"recall\": 0.35714285714285715, \"f1-score\": 0.31250000000000006, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6153846153846154, \"recall\": 0.6666666666666666, \"f1-score\": 0.64, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7282996568084287, \"recall\": 0.6949316115982782, \"f1-score\": 0.7075301115006998, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6948972092142519, \"recall\": 0.6666666666666666, \"f1-score\": 0.6767747977201759, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 70.75301115006998, "eval_f1_micro": 66.66666666666666, "eval_f1_weighted": 67.67747977201759, "eval_loss": 1.5485950708389282, "eval_runtime": 2.0833, "eval_samples_per_second": 60.482, "step": 1856 }, { "epoch": 117.0, "learning_rate": 0.00013833333333333333, "loss": 0.009, "step": 1872 }, { "epoch": 117.0, "eval_accuracy": 67.46031746031747, "eval_average_metrics": 68.30607345822315, "eval_classification_report": "{\"0\": {\"precision\": 0.6976744186046512, \"recall\": 0.7692307692307693, \"f1-score\": 0.7317073170731708, \"support\": 39.0}, \"1\": {\"precision\": 0.5625, \"recall\": 0.5625, \"f1-score\": 0.5625, \"support\": 16.0}, \"2\": {\"precision\": 0.3333333333333333, \"recall\": 0.35714285714285715, \"f1-score\": 0.3448275862068965, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.5555555555555556, \"recall\": 0.625, \"f1-score\": 0.5882352941176471, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7222023203612351, \"recall\": 0.6936851728518394, \"f1-score\": 0.704871100244746, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6883474370877473, \"recall\": 0.6746031746031746, \"f1-score\": 0.678165488877831, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}}", "eval_f1_macro": 70.4871100244746, "eval_f1_micro": 67.46031746031747, "eval_f1_weighted": 67.8165488877831, "eval_loss": 1.5715206861495972, "eval_runtime": 2.1469, "eval_samples_per_second": 58.688, "step": 1872 }, { "epoch": 118.0, "learning_rate": 0.00013666666666666666, "loss": 0.0065, "step": 1888 }, { "epoch": 118.0, "eval_accuracy": 69.04761904761905, "eval_average_metrics": 69.47293254684853, "eval_classification_report": "{\"0\": {\"precision\": 0.7619047619047619, \"recall\": 0.8205128205128205, \"f1-score\": 0.7901234567901233, \"support\": 39.0}, \"1\": {\"precision\": 0.5, \"recall\": 0.625, \"f1-score\": 0.5555555555555556, \"support\": 16.0}, \"2\": {\"precision\": 0.3, \"recall\": 0.21428571428571427, \"f1-score\": 0.25, \"support\": 14.0}, \"3\": {\"precision\": 0.9166666666666666, \"recall\": 0.7333333333333333, \"f1-score\": 0.8148148148148148, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6153846153846154, \"recall\": 0.6666666666666666, \"f1-score\": 0.64, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.696, \"recall\": 0.6904761904761905, \"f1-score\": 0.6932270916334661, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.720668837335504, \"recall\": 0.6978620145286811, \"f1-score\": 0.7057867920830884, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.695739577882435, \"recall\": 0.6904761904761905, \"f1-score\": 0.6894272276811958, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6904761904761905, \"recall\": 0.6904761904761905, \"f1-score\": 0.6904761904761905, \"support\": 126.0}}", "eval_f1_macro": 70.57867920830884, "eval_f1_micro": 69.3227091633466, "eval_f1_weighted": 68.94272276811958, "eval_loss": 1.5526163578033447, "eval_runtime": 2.0387, "eval_samples_per_second": 61.803, "step": 1888 }, { "epoch": 119.0, "learning_rate": 0.000135, "loss": 0.0166, "step": 1904 }, { "epoch": 119.0, "eval_accuracy": 69.04761904761905, "eval_average_metrics": 69.99903885408087, "eval_classification_report": "{\"0\": {\"precision\": 0.7692307692307693, \"recall\": 0.7692307692307693, \"f1-score\": 0.7692307692307693, \"support\": 39.0}, \"1\": {\"precision\": 0.5882352941176471, \"recall\": 0.625, \"f1-score\": 0.6060606060606061, \"support\": 16.0}, \"2\": {\"precision\": 0.3333333333333333, \"recall\": 0.42857142857142855, \"f1-score\": 0.375, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.5714285714285714, \"recall\": 0.6666666666666666, \"f1-score\": 0.6153846153846153, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6904761904761905, \"recall\": 0.6904761904761905, \"f1-score\": 0.6904761904761905, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7400671768318827, \"recall\": 0.7085661252327918, \"f1-score\": 0.72024952172011, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7147716157169939, \"recall\": 0.6904761904761905, \"f1-score\": 0.6987596514907439, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6904761904761905, \"recall\": 0.6904761904761905, \"f1-score\": 0.6904761904761905, \"support\": 126.0}}", "eval_f1_macro": 72.024952172011, "eval_f1_micro": 69.04761904761905, "eval_f1_weighted": 69.87596514907439, "eval_loss": 1.5800877809524536, "eval_runtime": 2.7416, "eval_samples_per_second": 45.959, "step": 1904 }, { "epoch": 120.0, "learning_rate": 0.0001333333333333333, "loss": 0.0096, "step": 1920 }, { "epoch": 120.0, "eval_accuracy": 69.04761904761905, "eval_average_metrics": 70.01991993378549, "eval_classification_report": "{\"0\": {\"precision\": 0.7692307692307693, \"recall\": 0.7692307692307693, \"f1-score\": 0.7692307692307693, \"support\": 39.0}, \"1\": {\"precision\": 0.5555555555555556, \"recall\": 0.625, \"f1-score\": 0.5882352941176471, \"support\": 16.0}, \"2\": {\"precision\": 0.3333333333333333, \"recall\": 0.42857142857142855, \"f1-score\": 0.375, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6153846153846154, \"recall\": 0.6666666666666666, \"f1-score\": 0.64, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6904761904761905, \"recall\": 0.6904761904761905, \"f1-score\": 0.6904761904761905, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.741320099653433, \"recall\": 0.7085661252327918, \"f1-score\": 0.7210039742392684, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7148080975461927, \"recall\": 0.6904761904761905, \"f1-score\": 0.6988404421597699, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6904761904761905, \"recall\": 0.6904761904761905, \"f1-score\": 0.6904761904761905, \"support\": 126.0}}", "eval_f1_macro": 72.10039742392684, "eval_f1_micro": 69.04761904761905, "eval_f1_weighted": 69.884044215977, "eval_loss": 1.582705020904541, "eval_runtime": 2.576, "eval_samples_per_second": 48.914, "step": 1920 }, { "epoch": 121.0, "learning_rate": 0.00013166666666666665, "loss": 0.0152, "step": 1936 }, { "epoch": 121.0, "eval_accuracy": 65.87301587301587, "eval_average_metrics": 66.78794586517117, "eval_classification_report": "{\"0\": {\"precision\": 0.7435897435897436, \"recall\": 0.7435897435897436, \"f1-score\": 0.7435897435897437, \"support\": 39.0}, \"1\": {\"precision\": 0.4, \"recall\": 0.625, \"f1-score\": 0.48780487804878053, \"support\": 16.0}, \"2\": {\"precision\": 0.3333333333333333, \"recall\": 0.21428571428571427, \"f1-score\": 0.2608695652173913, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6153846153846154, \"recall\": 0.6666666666666666, \"f1-score\": 0.64, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.664, \"recall\": 0.6587301587301587, \"f1-score\": 0.6613545816733067, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7103846770513438, \"recall\": 0.6819075985742652, \"f1-score\": 0.6892313619637763, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6801740587454873, \"recall\": 0.6587301587301587, \"f1-score\": 0.6622017322396053, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}}", "eval_f1_macro": 68.92313619637763, "eval_f1_micro": 66.13545816733067, "eval_f1_weighted": 66.22017322396053, "eval_loss": 1.5250835418701172, "eval_runtime": 2.2303, "eval_samples_per_second": 56.495, "step": 1936 }, { "epoch": 122.0, "learning_rate": 0.00013, "loss": 0.0126, "step": 1952 }, { "epoch": 122.0, "eval_accuracy": 69.04761904761905, "eval_average_metrics": 70.12512511207957, "eval_classification_report": "{\"0\": {\"precision\": 0.7435897435897436, \"recall\": 0.7435897435897436, \"f1-score\": 0.7435897435897437, \"support\": 39.0}, \"1\": {\"precision\": 0.6666666666666666, \"recall\": 0.625, \"f1-score\": 0.6451612903225806, \"support\": 16.0}, \"2\": {\"precision\": 0.2777777777777778, \"recall\": 0.35714285714285715, \"f1-score\": 0.31250000000000006, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.625, \"recall\": 0.8333333333333334, \"f1-score\": 0.7142857142857143, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6904761904761905, \"recall\": 0.6904761904761905, \"f1-score\": 0.6904761904761905, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7457123123789791, \"recall\": 0.7162991329657996, \"f1-score\": 0.7257896058892265, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7157238484619436, \"recall\": 0.6904761904761905, \"f1-score\": 0.6982630176415755, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6904761904761905, \"recall\": 0.6904761904761905, \"f1-score\": 0.6904761904761905, \"support\": 126.0}}", "eval_f1_macro": 72.57896058892264, "eval_f1_micro": 69.04761904761905, "eval_f1_weighted": 69.82630176415755, "eval_loss": 1.5566227436065674, "eval_runtime": 2.2693, "eval_samples_per_second": 55.524, "step": 1952 }, { "epoch": 123.0, "learning_rate": 0.00012833333333333333, "loss": 0.0083, "step": 1968 }, { "epoch": 123.0, "eval_accuracy": 65.07936507936508, "eval_average_metrics": 66.10890738061606, "eval_classification_report": "{\"0\": {\"precision\": 0.7435897435897436, \"recall\": 0.7435897435897436, \"f1-score\": 0.7435897435897437, \"support\": 39.0}, \"1\": {\"precision\": 0.4166666666666667, \"recall\": 0.625, \"f1-score\": 0.5, \"support\": 16.0}, \"2\": {\"precision\": 0.23076923076923078, \"recall\": 0.21428571428571427, \"f1-score\": 0.22222222222222224, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6153846153846154, \"recall\": 0.6666666666666666, \"f1-score\": 0.64, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6507936507936508, \"recall\": 0.6507936507936508, \"f1-score\": 0.6507936507936508, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7106328856328856, \"recall\": 0.6745001911668579, \"f1-score\": 0.6859056557095773, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6767566428280715, \"recall\": 0.6507936507936508, \"f1-score\": 0.6568633379277637, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6507936507936508, \"recall\": 0.6507936507936508, \"f1-score\": 0.6507936507936508, \"support\": 126.0}}", "eval_f1_macro": 68.59056557095772, "eval_f1_micro": 65.07936507936508, "eval_f1_weighted": 65.68633379277638, "eval_loss": 1.529131293296814, "eval_runtime": 2.2686, "eval_samples_per_second": 55.542, "step": 1968 }, { "epoch": 124.0, "learning_rate": 0.00012666666666666666, "loss": 0.0058, "step": 1984 }, { "epoch": 124.0, "eval_accuracy": 64.28571428571429, "eval_average_metrics": 65.69632423432769, "eval_classification_report": "{\"0\": {\"precision\": 0.7567567567567568, \"recall\": 0.717948717948718, \"f1-score\": 0.736842105263158, \"support\": 39.0}, \"1\": {\"precision\": 0.43478260869565216, \"recall\": 0.625, \"f1-score\": 0.5128205128205128, \"support\": 16.0}, \"2\": {\"precision\": 0.2, \"recall\": 0.21428571428571427, \"f1-score\": 0.20689655172413796, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6153846153846154, \"recall\": 0.6666666666666666, \"f1-score\": 0.64, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.648, \"recall\": 0.6428571428571429, \"f1-score\": 0.6454183266932271, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7106899661247488, \"recall\": 0.671651188317855, \"f1-score\": 0.684877567264671, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6797137805678178, \"recall\": 0.6428571428571429, \"f1-score\": 0.6546999325580668, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}}", "eval_f1_macro": 68.4877567264671, "eval_f1_micro": 64.5418326693227, "eval_f1_weighted": 65.46999325580668, "eval_loss": 1.5608023405075073, "eval_runtime": 2.2706, "eval_samples_per_second": 55.492, "step": 1984 }, { "epoch": 125.0, "learning_rate": 0.000125, "loss": 0.0104, "step": 2000 }, { "epoch": 125.0, "eval_accuracy": 68.25396825396825, "eval_average_metrics": 68.65827571039534, "eval_classification_report": "{\"0\": {\"precision\": 0.7441860465116279, \"recall\": 0.8205128205128205, \"f1-score\": 0.7804878048780488, \"support\": 39.0}, \"1\": {\"precision\": 0.5263157894736842, \"recall\": 0.625, \"f1-score\": 0.5714285714285714, \"support\": 16.0}, \"2\": {\"precision\": 0.25, \"recall\": 0.21428571428571427, \"f1-score\": 0.23076923076923075, \"support\": 14.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.6, \"f1-score\": 0.7499999999999999, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6, \"recall\": 0.75, \"f1-score\": 0.6666666666666665, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7236183697832005, \"recall\": 0.6923064589731257, \"f1-score\": 0.7001043972588687, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6964967790461759, \"recall\": 0.6825396825396826, \"f1-score\": 0.6811472660775796, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}}", "eval_f1_macro": 70.01043972588687, "eval_f1_micro": 68.25396825396825, "eval_f1_weighted": 68.11472660775796, "eval_loss": 1.5680619478225708, "eval_runtime": 2.0232, "eval_samples_per_second": 62.279, "step": 2000 }, { "epoch": 126.0, "learning_rate": 0.0001233333333333333, "loss": 0.0047, "step": 2016 }, { "epoch": 126.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 67.32552080841714, "eval_classification_report": "{\"0\": {\"precision\": 0.75, \"recall\": 0.7692307692307693, \"f1-score\": 0.7594936708860761, \"support\": 39.0}, \"1\": {\"precision\": 0.4166666666666667, \"recall\": 0.625, \"f1-score\": 0.5, \"support\": 16.0}, \"2\": {\"precision\": 0.3, \"recall\": 0.21428571428571427, \"f1-score\": 0.25, \"support\": 14.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.6, \"f1-score\": 0.7499999999999999, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6, \"recall\": 0.75, \"f1-score\": 0.6666666666666665, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.717636684303351, \"recall\": 0.6866084532751199, \"f1-score\": 0.6919719599044494, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6899281934996221, \"recall\": 0.6666666666666666, \"f1-score\": 0.6677155390989026, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 69.19719599044494, "eval_f1_micro": 66.66666666666666, "eval_f1_weighted": 66.77155390989026, "eval_loss": 1.599306344985962, "eval_runtime": 2.3583, "eval_samples_per_second": 53.428, "step": 2016 }, { "epoch": 127.0, "learning_rate": 0.00012166666666666665, "loss": 0.0071, "step": 2032 }, { "epoch": 127.0, "eval_accuracy": 65.07936507936508, "eval_average_metrics": 66.44072538513217, "eval_classification_report": "{\"0\": {\"precision\": 0.75, \"recall\": 0.6923076923076923, \"f1-score\": 0.7199999999999999, \"support\": 39.0}, \"1\": {\"precision\": 0.5, \"recall\": 0.625, \"f1-score\": 0.5555555555555556, \"support\": 16.0}, \"2\": {\"precision\": 0.25, \"recall\": 0.2857142857142857, \"f1-score\": 0.26666666666666666, \"support\": 14.0}, \"3\": {\"precision\": 0.8333333333333334, \"recall\": 0.6666666666666666, \"f1-score\": 0.7407407407407408, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6153846153846154, \"recall\": 0.6666666666666666, \"f1-score\": 0.64, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.656, \"recall\": 0.6507936507936508, \"f1-score\": 0.653386454183267, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7054131054131054, \"recall\": 0.6841461008127675, \"f1-score\": 0.6920705813189474, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6778540903540904, \"recall\": 0.6507936507936508, \"f1-score\": 0.6613783291094216, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6507936507936508, \"recall\": 0.6507936507936508, \"f1-score\": 0.6507936507936508, \"support\": 126.0}}", "eval_f1_macro": 69.20705813189474, "eval_f1_micro": 65.3386454183267, "eval_f1_weighted": 66.13783291094217, "eval_loss": 1.5551515817642212, "eval_runtime": 2.7101, "eval_samples_per_second": 46.492, "step": 2032 }, { "epoch": 128.0, "learning_rate": 0.00011999999999999999, "loss": 0.0075, "step": 2048 }, { "epoch": 128.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 68.14144627927507, "eval_classification_report": "{\"0\": {\"precision\": 0.7073170731707317, \"recall\": 0.7435897435897436, \"f1-score\": 0.725, \"support\": 39.0}, \"1\": {\"precision\": 0.45454545454545453, \"recall\": 0.625, \"f1-score\": 0.5263157894736842, \"support\": 16.0}, \"2\": {\"precision\": 0.21428571428571427, \"recall\": 0.21428571428571427, \"f1-score\": 0.21428571428571427, \"support\": 14.0}, \"3\": {\"precision\": 0.8333333333333334, \"recall\": 0.6666666666666666, \"f1-score\": 0.7407407407407408, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.6666666666666666, \"f1-score\": 0.8, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.672, \"recall\": 0.6666666666666666, \"f1-score\": 0.6693227091633466, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7492858316029047, \"recall\": 0.6920086086752754, \"f1-score\": 0.712825905954561, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7012547073522682, \"recall\": 0.6666666666666666, \"f1-score\": 0.6768425693864291, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 71.2825905954561, "eval_f1_micro": 66.93227091633466, "eval_f1_weighted": 67.6842569386429, "eval_loss": 1.6262917518615723, "eval_runtime": 2.3417, "eval_samples_per_second": 53.808, "step": 2048 }, { "epoch": 129.0, "learning_rate": 0.00011833333333333331, "loss": 0.0097, "step": 2064 }, { "epoch": 129.0, "eval_accuracy": 63.49206349206349, "eval_average_metrics": 64.85317545821748, "eval_classification_report": "{\"0\": {\"precision\": 0.7222222222222222, \"recall\": 0.6666666666666666, \"f1-score\": 0.6933333333333334, \"support\": 39.0}, \"1\": {\"precision\": 0.4166666666666667, \"recall\": 0.625, \"f1-score\": 0.5, \"support\": 16.0}, \"2\": {\"precision\": 0.21428571428571427, \"recall\": 0.21428571428571427, \"f1-score\": 0.21428571428571427, \"support\": 14.0}, \"3\": {\"precision\": 0.8181818181818182, \"recall\": 0.6, \"f1-score\": 0.6923076923076923, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6428571428571429, \"recall\": 0.75, \"f1-score\": 0.6923076923076924, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6349206349206349, \"recall\": 0.6349206349206349, \"f1-score\": 0.6349206349206349, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.700388808722142, \"recall\": 0.6752124418791086, \"f1-score\": 0.6821748186454069, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6611875558304131, \"recall\": 0.6349206349206349, \"f1-score\": 0.6421109298420222, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6349206349206349, \"recall\": 0.6349206349206349, \"f1-score\": 0.6349206349206349, \"support\": 126.0}}", "eval_f1_macro": 68.21748186454069, "eval_f1_micro": 63.49206349206349, "eval_f1_weighted": 64.21109298420222, "eval_loss": 1.576140284538269, "eval_runtime": 2.7474, "eval_samples_per_second": 45.862, "step": 2064 }, { "epoch": 130.0, "learning_rate": 0.00011666666666666665, "loss": 0.0119, "step": 2080 }, { "epoch": 130.0, "eval_accuracy": 64.28571428571429, "eval_average_metrics": 65.18644419020359, "eval_classification_report": "{\"0\": {\"precision\": 0.7297297297297297, \"recall\": 0.6923076923076923, \"f1-score\": 0.7105263157894737, \"support\": 39.0}, \"1\": {\"precision\": 0.47619047619047616, \"recall\": 0.625, \"f1-score\": 0.5405405405405405, \"support\": 16.0}, \"2\": {\"precision\": 0.16666666666666666, \"recall\": 0.14285714285714285, \"f1-score\": 0.15384615384615383, \"support\": 14.0}, \"3\": {\"precision\": 0.8181818181818182, \"recall\": 0.6, \"f1-score\": 0.6923076923076923, \"support\": 15.0}, \"4\": {\"precision\": 1.0, \"recall\": 0.8181818181818182, \"f1-score\": 0.9, \"support\": 11.0}, \"5\": {\"precision\": 0.5625, \"recall\": 0.75, \"f1-score\": 0.6428571428571429, \"support\": 12.0}, \"6\": {\"precision\": 0.7272727272727273, \"recall\": 0.8888888888888888, \"f1-score\": 0.7999999999999999, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.6883141258141259, \"recall\": 0.6824706158039492, \"f1-score\": 0.6785271680008522, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6563040313040314, \"recall\": 0.6428571428571429, \"f1-score\": 0.6432163138930056, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}}", "eval_f1_macro": 67.85271680008522, "eval_f1_micro": 64.28571428571429, "eval_f1_weighted": 64.32163138930056, "eval_loss": 1.601499319076538, "eval_runtime": 2.14, "eval_samples_per_second": 58.879, "step": 2080 }, { "epoch": 131.0, "learning_rate": 0.000115, "loss": 0.0084, "step": 2096 }, { "epoch": 131.0, "eval_accuracy": 65.87301587301587, "eval_average_metrics": 66.89766018618172, "eval_classification_report": "{\"0\": {\"precision\": 0.717948717948718, \"recall\": 0.717948717948718, \"f1-score\": 0.717948717948718, \"support\": 39.0}, \"1\": {\"precision\": 0.45454545454545453, \"recall\": 0.625, \"f1-score\": 0.5263157894736842, \"support\": 16.0}, \"2\": {\"precision\": 0.23076923076923078, \"recall\": 0.21428571428571427, \"f1-score\": 0.22222222222222224, \"support\": 14.0}, \"3\": {\"precision\": 0.8333333333333334, \"recall\": 0.6666666666666666, \"f1-score\": 0.7407407407407408, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.75, \"recall\": 0.75, \"f1-score\": 0.75, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7096218596218596, \"recall\": 0.6883178549845217, \"f1-score\": 0.6958777488103254, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6728452103452104, \"recall\": 0.6587301587301587, \"f1-score\": 0.6625683411766266, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}}", "eval_f1_macro": 69.58777488103254, "eval_f1_micro": 65.87301587301587, "eval_f1_weighted": 66.25683411766265, "eval_loss": 1.564984679222107, "eval_runtime": 1.7398, "eval_samples_per_second": 72.421, "step": 2096 }, { "epoch": 132.0, "learning_rate": 0.00011333333333333331, "loss": 0.0063, "step": 2112 }, { "epoch": 132.0, "eval_accuracy": 69.84126984126983, "eval_average_metrics": 70.26171254135772, "eval_classification_report": "{\"0\": {\"precision\": 0.7111111111111111, \"recall\": 0.8205128205128205, \"f1-score\": 0.7619047619047619, \"support\": 39.0}, \"1\": {\"precision\": 0.5625, \"recall\": 0.5625, \"f1-score\": 0.5625, \"support\": 16.0}, \"2\": {\"precision\": 0.2727272727272727, \"recall\": 0.21428571428571427, \"f1-score\": 0.23999999999999996, \"support\": 14.0}, \"3\": {\"precision\": 0.9166666666666666, \"recall\": 0.7333333333333333, \"f1-score\": 0.8148148148148148, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.6923076923076923, \"recall\": 0.75, \"f1-score\": 0.7199999999999999, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.5555555555555556, \"recall\": 0.625, \"f1-score\": 0.5882352941176471, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6984126984126984, \"recall\": 0.6984126984126984, \"f1-score\": 0.6984126984126984, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.735551023051023, \"recall\": 0.7102778394445061, \"f1-score\": 0.7190606422142369, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6988385071718405, \"recall\": 0.6984126984126984, \"f1-score\": 0.6945824626146755, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6984126984126984, \"recall\": 0.6984126984126984, \"f1-score\": 0.6984126984126984, \"support\": 126.0}}", "eval_f1_macro": 71.90606422142369, "eval_f1_micro": 69.84126984126983, "eval_f1_weighted": 69.45824626146755, "eval_loss": 1.555337905883789, "eval_runtime": 1.8775, "eval_samples_per_second": 67.11, "step": 2112 }, { "epoch": 133.0, "learning_rate": 0.00011166666666666667, "loss": 0.007, "step": 2128 }, { "epoch": 133.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 68.28825011379114, "eval_classification_report": "{\"0\": {\"precision\": 0.7714285714285715, \"recall\": 0.6923076923076923, \"f1-score\": 0.7297297297297296, \"support\": 39.0}, \"1\": {\"precision\": 0.47619047619047616, \"recall\": 0.625, \"f1-score\": 0.5405405405405405, \"support\": 16.0}, \"2\": {\"precision\": 0.23529411764705882, \"recall\": 0.2857142857142857, \"f1-score\": 0.2580645161290323, \"support\": 14.0}, \"3\": {\"precision\": 0.8333333333333334, \"recall\": 0.6666666666666666, \"f1-score\": 0.7407407407407408, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.6923076923076923, \"recall\": 0.75, \"f1-score\": 0.7199999999999999, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.672, \"recall\": 0.6666666666666666, \"f1-score\": 0.6693227091633466, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7368812015870839, \"recall\": 0.7035063701730367, \"f1-score\": 0.7155370114330688, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7025464886809424, \"recall\": 0.6666666666666666, \"f1-score\": 0.6800036172885635, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 71.55370114330688, "eval_f1_micro": 66.93227091633466, "eval_f1_weighted": 68.00036172885635, "eval_loss": 1.5296144485473633, "eval_runtime": 2.4605, "eval_samples_per_second": 51.21, "step": 2128 }, { "epoch": 134.0, "learning_rate": 0.00010999999999999998, "loss": 0.0076, "step": 2144 }, { "epoch": 134.0, "eval_accuracy": 65.07936507936508, "eval_average_metrics": 66.84779601316828, "eval_classification_report": "{\"0\": {\"precision\": 0.7297297297297297, \"recall\": 0.6923076923076923, \"f1-score\": 0.7105263157894737, \"support\": 39.0}, \"1\": {\"precision\": 0.43478260869565216, \"recall\": 0.625, \"f1-score\": 0.5128205128205128, \"support\": 16.0}, \"2\": {\"precision\": 0.1875, \"recall\": 0.21428571428571427, \"f1-score\": 0.19999999999999998, \"support\": 14.0}, \"3\": {\"precision\": 0.8181818181818182, \"recall\": 0.6, \"f1-score\": 0.6923076923076923, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.8181818181818182, \"recall\": 0.75, \"f1-score\": 0.7826086956521738, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.656, \"recall\": 0.6507936507936508, \"f1-score\": 0.653386454183267, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7346391775739602, \"recall\": 0.6881624548291215, \"f1-score\": 0.7054467547030476, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6892553651094024, \"recall\": 0.6507936507936508, \"f1-score\": 0.6642849808467658, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6507936507936508, \"recall\": 0.6507936507936508, \"f1-score\": 0.6507936507936508, \"support\": 126.0}}", "eval_f1_macro": 70.54467547030477, "eval_f1_micro": 65.3386454183267, "eval_f1_weighted": 66.42849808467658, "eval_loss": 1.5401450395584106, "eval_runtime": 2.5253, "eval_samples_per_second": 49.895, "step": 2144 }, { "epoch": 135.0, "learning_rate": 0.00010833333333333333, "loss": 0.0063, "step": 2160 }, { "epoch": 135.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 67.711345048342, "eval_classification_report": "{\"0\": {\"precision\": 0.7, \"recall\": 0.717948717948718, \"f1-score\": 0.708860759493671, \"support\": 39.0}, \"1\": {\"precision\": 0.4166666666666667, \"recall\": 0.625, \"f1-score\": 0.5, \"support\": 16.0}, \"2\": {\"precision\": 0.25, \"recall\": 0.21428571428571427, \"f1-score\": 0.23076923076923075, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 0.6666666666666666, \"recall\": 1.0, \"f1-score\": 0.8, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.672, \"recall\": 0.6666666666666666, \"f1-score\": 0.6693227091633466, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7184223184223185, \"recall\": 0.6984188650855317, \"f1-score\": 0.6975333503814517, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6980210265924551, \"recall\": 0.6666666666666666, \"f1-score\": 0.6749310757222149, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 69.75333503814517, "eval_f1_micro": 66.93227091633466, "eval_f1_weighted": 67.49310757222149, "eval_loss": 1.5585240125656128, "eval_runtime": 2.4012, "eval_samples_per_second": 52.474, "step": 2160 }, { "epoch": 136.0, "learning_rate": 0.00010666666666666667, "loss": 0.0097, "step": 2176 }, { "epoch": 136.0, "eval_accuracy": 65.87301587301587, "eval_average_metrics": 66.7180541474404, "eval_classification_report": "{\"0\": {\"precision\": 0.7297297297297297, \"recall\": 0.6923076923076923, \"f1-score\": 0.7105263157894737, \"support\": 39.0}, \"1\": {\"precision\": 0.5, \"recall\": 0.625, \"f1-score\": 0.5555555555555556, \"support\": 16.0}, \"2\": {\"precision\": 0.21428571428571427, \"recall\": 0.21428571428571427, \"f1-score\": 0.21428571428571427, \"support\": 14.0}, \"3\": {\"precision\": 0.8333333333333334, \"recall\": 0.6666666666666666, \"f1-score\": 0.7407407407407408, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.6923076923076923, \"recall\": 0.75, \"f1-score\": 0.7199999999999999, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 0.6666666666666666, \"recall\": 1.0, \"f1-score\": 0.8, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.664, \"recall\": 0.6587301587301587, \"f1-score\": 0.6613545816733067, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.6856015606015606, \"recall\": 0.6955698622365288, \"f1-score\": 0.6833554706069326, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6793689293689293, \"recall\": 0.6587301587301587, \"f1-score\": 0.6652819548872181, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}}", "eval_f1_macro": 68.33554706069326, "eval_f1_micro": 66.13545816733067, "eval_f1_weighted": 66.5281954887218, "eval_loss": 1.5569709539413452, "eval_runtime": 2.252, "eval_samples_per_second": 55.95, "step": 2176 }, { "epoch": 137.0, "learning_rate": 0.00010499999999999999, "loss": 0.0087, "step": 2192 }, { "epoch": 137.0, "eval_accuracy": 67.46031746031747, "eval_average_metrics": 67.81861853117971, "eval_classification_report": "{\"0\": {\"precision\": 0.7142857142857143, \"recall\": 0.7692307692307693, \"f1-score\": 0.7407407407407408, \"support\": 39.0}, \"1\": {\"precision\": 0.5625, \"recall\": 0.5625, \"f1-score\": 0.5625, \"support\": 16.0}, \"2\": {\"precision\": 0.26666666666666666, \"recall\": 0.2857142857142857, \"f1-score\": 0.2758620689655172, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6923076923076923, \"recall\": 0.75, \"f1-score\": 0.7199999999999999, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 0.6666666666666666, \"recall\": 1.0, \"f1-score\": 0.8, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.6901686276686277, \"recall\": 0.6950079241745909, \"f1-score\": 0.68600064976051, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6876417894275036, \"recall\": 0.6746031746031746, \"f1-score\": 0.6775377422803289, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}}", "eval_f1_macro": 68.600064976051, "eval_f1_micro": 67.46031746031747, "eval_f1_weighted": 67.7537742280329, "eval_loss": 1.58505380153656, "eval_runtime": 2.255, "eval_samples_per_second": 55.876, "step": 2192 }, { "epoch": 138.0, "learning_rate": 0.00010333333333333333, "loss": 0.0058, "step": 2208 }, { "epoch": 138.0, "eval_accuracy": 64.28571428571429, "eval_average_metrics": 65.61052574531166, "eval_classification_report": "{\"0\": {\"precision\": 0.7428571428571429, \"recall\": 0.6666666666666666, \"f1-score\": 0.7027027027027027, \"support\": 39.0}, \"1\": {\"precision\": 0.45454545454545453, \"recall\": 0.625, \"f1-score\": 0.5263157894736842, \"support\": 16.0}, \"2\": {\"precision\": 0.2, \"recall\": 0.21428571428571427, \"f1-score\": 0.20689655172413796, \"support\": 14.0}, \"3\": {\"precision\": 0.8333333333333334, \"recall\": 0.6666666666666666, \"f1-score\": 0.7407407407407408, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6, \"recall\": 0.75, \"f1-score\": 0.6666666666666665, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7022246272246273, \"recall\": 0.682619849286516, \"f1-score\": 0.6878512652091291, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6685193774479489, \"recall\": 0.6428571428571429, \"f1-score\": 0.6508554788890516, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}}", "eval_f1_macro": 68.78512652091291, "eval_f1_micro": 64.28571428571429, "eval_f1_weighted": 65.08554788890515, "eval_loss": 1.5597132444381714, "eval_runtime": 2.2488, "eval_samples_per_second": 56.029, "step": 2208 }, { "epoch": 139.0, "learning_rate": 0.00010166666666666667, "loss": 0.0042, "step": 2224 }, { "epoch": 139.0, "eval_accuracy": 65.87301587301587, "eval_average_metrics": 66.82102437441856, "eval_classification_report": "{\"0\": {\"precision\": 0.7297297297297297, \"recall\": 0.6923076923076923, \"f1-score\": 0.7105263157894737, \"support\": 39.0}, \"1\": {\"precision\": 0.47619047619047616, \"recall\": 0.625, \"f1-score\": 0.5405405405405405, \"support\": 16.0}, \"2\": {\"precision\": 0.2727272727272727, \"recall\": 0.21428571428571427, \"f1-score\": 0.23999999999999996, \"support\": 14.0}, \"3\": {\"precision\": 0.8461538461538461, \"recall\": 0.7333333333333333, \"f1-score\": 0.7857142857142856, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6428571428571429, \"recall\": 0.75, \"f1-score\": 0.6923076923076924, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.664, \"recall\": 0.6587301587301587, \"f1-score\": 0.6613545816733067, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.696715138381805, \"recall\": 0.6928762595429263, \"f1-score\": 0.6921121632525141, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6682800182800183, \"recall\": 0.6587301587301587, \"f1-score\": 0.660644071320763, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}}", "eval_f1_macro": 69.21121632525141, "eval_f1_micro": 66.13545816733067, "eval_f1_weighted": 66.0644071320763, "eval_loss": 1.5665444135665894, "eval_runtime": 2.1299, "eval_samples_per_second": 59.157, "step": 2224 }, { "epoch": 140.0, "learning_rate": 9.999999999999999e-05, "loss": 0.0059, "step": 2240 }, { "epoch": 140.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 67.84392871430347, "eval_classification_report": "{\"0\": {\"precision\": 0.7073170731707317, \"recall\": 0.7435897435897436, \"f1-score\": 0.725, \"support\": 39.0}, \"1\": {\"precision\": 0.5555555555555556, \"recall\": 0.625, \"f1-score\": 0.5882352941176471, \"support\": 16.0}, \"2\": {\"precision\": 0.23529411764705882, \"recall\": 0.2857142857142857, \"f1-score\": 0.2580645161290323, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.8888888888888888, \"recall\": 0.7272727272727273, \"f1-score\": 0.7999999999999999, \"support\": 11.0}, \"5\": {\"precision\": 0.6923076923076923, \"recall\": 0.75, \"f1-score\": 0.7199999999999999, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7308599945496167, \"recall\": 0.6890023556690223, \"f1-score\": 0.7056362953232023, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6911070779819498, \"recall\": 0.6666666666666666, \"f1-score\": 0.6747875199156034, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 70.56362953232022, "eval_f1_micro": 66.66666666666666, "eval_f1_weighted": 67.47875199156034, "eval_loss": 1.5971219539642334, "eval_runtime": 2.3558, "eval_samples_per_second": 53.486, "step": 2240 }, { "epoch": 141.0, "learning_rate": 9.833333333333333e-05, "loss": 0.0056, "step": 2256 }, { "epoch": 141.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 67.58779532461898, "eval_classification_report": "{\"0\": {\"precision\": 0.725, \"recall\": 0.7435897435897436, \"f1-score\": 0.7341772151898733, \"support\": 39.0}, \"1\": {\"precision\": 0.43478260869565216, \"recall\": 0.625, \"f1-score\": 0.5128205128205128, \"support\": 16.0}, \"2\": {\"precision\": 0.3, \"recall\": 0.21428571428571427, \"f1-score\": 0.25, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6923076923076923, \"recall\": 0.75, \"f1-score\": 0.7199999999999999, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.672, \"recall\": 0.6666666666666666, \"f1-score\": 0.6693227091633466, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7170271891286384, \"recall\": 0.6911668578335246, \"f1-score\": 0.6986461998698285, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6824592333132705, \"recall\": 0.6666666666666666, \"f1-score\": 0.6688762372849172, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 69.86461998698285, "eval_f1_micro": 66.93227091633466, "eval_f1_weighted": 66.88762372849172, "eval_loss": 1.6212563514709473, "eval_runtime": 2.2276, "eval_samples_per_second": 56.563, "step": 2256 }, { "epoch": 142.0, "learning_rate": 9.666666666666667e-05, "loss": 0.0062, "step": 2272 }, { "epoch": 142.0, "eval_accuracy": 64.28571428571429, "eval_average_metrics": 65.97644437657301, "eval_classification_report": "{\"0\": {\"precision\": 0.7647058823529411, \"recall\": 0.6666666666666666, \"f1-score\": 0.7123287671232877, \"support\": 39.0}, \"1\": {\"precision\": 0.4, \"recall\": 0.625, \"f1-score\": 0.48780487804878053, \"support\": 16.0}, \"2\": {\"precision\": 0.2, \"recall\": 0.21428571428571427, \"f1-score\": 0.20689655172413796, \"support\": 14.0}, \"3\": {\"precision\": 0.8333333333333334, \"recall\": 0.6666666666666666, \"f1-score\": 0.7407407407407408, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.75, \"recall\": 0.75, \"f1-score\": 0.75, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.648, \"recall\": 0.6428571428571429, \"f1-score\": 0.6454183266932271, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7152583255524433, \"recall\": 0.682619849286516, \"f1-score\": 0.6939010970234641, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.682641389889289, \"recall\": 0.6428571428571429, \"f1-score\": 0.6568812084890864, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}}", "eval_f1_macro": 69.39010970234641, "eval_f1_micro": 64.5418326693227, "eval_f1_weighted": 65.68812084890864, "eval_loss": 1.6037211418151855, "eval_runtime": 2.1388, "eval_samples_per_second": 58.913, "step": 2272 }, { "epoch": 143.0, "learning_rate": 9.499999999999999e-05, "loss": 0.004, "step": 2288 }, { "epoch": 143.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 68.20071931963442, "eval_classification_report": "{\"0\": {\"precision\": 0.75, \"recall\": 0.6923076923076923, \"f1-score\": 0.7199999999999999, \"support\": 39.0}, \"1\": {\"precision\": 0.5263157894736842, \"recall\": 0.625, \"f1-score\": 0.5714285714285714, \"support\": 16.0}, \"2\": {\"precision\": 0.2777777777777778, \"recall\": 0.35714285714285715, \"f1-score\": 0.31250000000000006, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6428571428571429, \"recall\": 0.75, \"f1-score\": 0.6923076923076924, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.672, \"recall\": 0.6666666666666666, \"f1-score\": 0.6693227091633466, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7328141481650253, \"recall\": 0.7013418680085347, \"f1-score\": 0.7125339965045847, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7015863221063722, \"recall\": 0.6666666666666666, \"f1-score\": 0.6795054004507786, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 71.25339965045848, "eval_f1_micro": 66.93227091633466, "eval_f1_weighted": 67.95054004507786, "eval_loss": 1.6396185159683228, "eval_runtime": 2.2658, "eval_samples_per_second": 55.609, "step": 2288 }, { "epoch": 144.0, "learning_rate": 9.333333333333333e-05, "loss": 0.0036, "step": 2304 }, { "epoch": 144.0, "eval_accuracy": 64.28571428571429, "eval_average_metrics": 65.75379439070892, "eval_classification_report": "{\"0\": {\"precision\": 0.75, \"recall\": 0.6923076923076923, \"f1-score\": 0.7199999999999999, \"support\": 39.0}, \"1\": {\"precision\": 0.4166666666666667, \"recall\": 0.625, \"f1-score\": 0.5, \"support\": 16.0}, \"2\": {\"precision\": 0.21428571428571427, \"recall\": 0.21428571428571427, \"f1-score\": 0.21428571428571427, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6428571428571429, \"recall\": 0.75, \"f1-score\": 0.6923076923076924, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.648, \"recall\": 0.6428571428571429, \"f1-score\": 0.6454183266932271, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7125661375661375, \"recall\": 0.6780614447281114, \"f1-score\": 0.688214704685293, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6795256991685563, \"recall\": 0.6428571428571429, \"f1-score\": 0.6536616013926938, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}}", "eval_f1_macro": 68.8214704685293, "eval_f1_micro": 64.5418326693227, "eval_f1_weighted": 65.36616013926938, "eval_loss": 1.625910758972168, "eval_runtime": 2.3199, "eval_samples_per_second": 54.313, "step": 2304 }, { "epoch": 145.0, "learning_rate": 9.166666666666667e-05, "loss": 0.0038, "step": 2320 }, { "epoch": 145.0, "eval_accuracy": 68.25396825396825, "eval_average_metrics": 68.48534364285436, "eval_classification_report": "{\"0\": {\"precision\": 0.7560975609756098, \"recall\": 0.7948717948717948, \"f1-score\": 0.7749999999999999, \"support\": 39.0}, \"1\": {\"precision\": 0.5263157894736842, \"recall\": 0.625, \"f1-score\": 0.5714285714285714, \"support\": 16.0}, \"2\": {\"precision\": 0.25, \"recall\": 0.21428571428571427, \"f1-score\": 0.23076923076923075, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6428571428571429, \"recall\": 0.75, \"f1-score\": 0.6923076923076924, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 0.6666666666666666, \"recall\": 1.0, \"f1-score\": 0.8, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.688, \"recall\": 0.6825396825396826, \"f1-score\": 0.6852589641434262, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.6933681981499697, \"recall\": 0.6968648635315302, \"f1-score\": 0.687341688812277, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.695096237364255, \"recall\": 0.6825396825396826, \"f1-score\": 0.6842734102187883, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}}", "eval_f1_macro": 68.7341688812277, "eval_f1_micro": 68.52589641434263, "eval_f1_weighted": 68.42734102187883, "eval_loss": 1.6226211786270142, "eval_runtime": 2.1765, "eval_samples_per_second": 57.891, "step": 2320 }, { "epoch": 146.0, "learning_rate": 8.999999999999999e-05, "loss": 0.0051, "step": 2336 }, { "epoch": 146.0, "eval_accuracy": 64.28571428571429, "eval_average_metrics": 65.72529608985289, "eval_classification_report": "{\"0\": {\"precision\": 0.75, \"recall\": 0.6923076923076923, \"f1-score\": 0.7199999999999999, \"support\": 39.0}, \"1\": {\"precision\": 0.4, \"recall\": 0.625, \"f1-score\": 0.48780487804878053, \"support\": 16.0}, \"2\": {\"precision\": 0.23076923076923078, \"recall\": 0.21428571428571427, \"f1-score\": 0.22222222222222224, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6428571428571429, \"recall\": 0.75, \"f1-score\": 0.6923076923076924, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.648, \"recall\": 0.6428571428571429, \"f1-score\": 0.6454183266932271, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7125457875457876, \"recall\": 0.6780614447281114, \"f1-score\": 0.6877415253503251, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.679240798883656, \"recall\": 0.6428571428571429, \"f1-score\": 0.6529948486934207, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}}", "eval_f1_macro": 68.77415253503251, "eval_f1_micro": 64.5418326693227, "eval_f1_weighted": 65.29948486934207, "eval_loss": 1.6279187202453613, "eval_runtime": 2.0129, "eval_samples_per_second": 62.596, "step": 2336 }, { "epoch": 147.0, "learning_rate": 8.833333333333333e-05, "loss": 0.0081, "step": 2352 }, { "epoch": 147.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 68.17518217946593, "eval_classification_report": "{\"0\": {\"precision\": 0.7714285714285715, \"recall\": 0.6923076923076923, \"f1-score\": 0.7297297297297296, \"support\": 39.0}, \"1\": {\"precision\": 0.47619047619047616, \"recall\": 0.625, \"f1-score\": 0.5405405405405405, \"support\": 16.0}, \"2\": {\"precision\": 0.29411764705882354, \"recall\": 0.35714285714285715, \"f1-score\": 0.3225806451612903, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6428571428571429, \"recall\": 0.75, \"f1-score\": 0.6923076923076924, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.672, \"recall\": 0.6666666666666666, \"f1-score\": 0.6693227091633466, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7314411623235153, \"recall\": 0.7013418680085347, \"f1-score\": 0.7113031458382503, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7036693970517499, \"recall\": 0.6666666666666666, \"f1-score\": 0.6797147655103741, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 71.13031458382503, "eval_f1_micro": 66.93227091633466, "eval_f1_weighted": 67.97147655103741, "eval_loss": 1.6180979013442993, "eval_runtime": 1.3773, "eval_samples_per_second": 91.483, "step": 2352 }, { "epoch": 148.0, "learning_rate": 8.666666666666665e-05, "loss": 0.004, "step": 2368 }, { "epoch": 148.0, "eval_accuracy": 64.28571428571429, "eval_average_metrics": 65.64871389168695, "eval_classification_report": "{\"0\": {\"precision\": 0.75, \"recall\": 0.6923076923076923, \"f1-score\": 0.7199999999999999, \"support\": 39.0}, \"1\": {\"precision\": 0.4166666666666667, \"recall\": 0.625, \"f1-score\": 0.5, \"support\": 16.0}, \"2\": {\"precision\": 0.2, \"recall\": 0.21428571428571427, \"f1-score\": 0.20689655172413796, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6428571428571429, \"recall\": 0.75, \"f1-score\": 0.6923076923076924, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7109788359788359, \"recall\": 0.6780614447281114, \"f1-score\": 0.6873936866228956, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6779383975812547, \"recall\": 0.6428571428571429, \"f1-score\": 0.6528405833302965, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}}", "eval_f1_macro": 68.73936866228956, "eval_f1_micro": 64.28571428571429, "eval_f1_weighted": 65.28405833302965, "eval_loss": 1.6450259685516357, "eval_runtime": 1.7333, "eval_samples_per_second": 72.696, "step": 2368 }, { "epoch": 149.0, "learning_rate": 8.499999999999999e-05, "loss": 0.0039, "step": 2384 }, { "epoch": 149.0, "eval_accuracy": 64.28571428571429, "eval_average_metrics": 65.53166427463734, "eval_classification_report": "{\"0\": {\"precision\": 0.7368421052631579, \"recall\": 0.717948717948718, \"f1-score\": 0.7272727272727273, \"support\": 39.0}, \"1\": {\"precision\": 0.43478260869565216, \"recall\": 0.625, \"f1-score\": 0.5128205128205128, \"support\": 16.0}, \"2\": {\"precision\": 0.2, \"recall\": 0.21428571428571427, \"f1-score\": 0.20689655172413796, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6153846153846154, \"recall\": 0.6666666666666666, \"f1-score\": 0.64, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7084772270699045, \"recall\": 0.671651188317855, \"f1-score\": 0.683814303043512, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6735497217721802, \"recall\": 0.6428571428571429, \"f1-score\": 0.6517379822276953, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}}", "eval_f1_macro": 68.3814303043512, "eval_f1_micro": 64.28571428571429, "eval_f1_weighted": 65.17379822276953, "eval_loss": 1.6612730026245117, "eval_runtime": 2.022, "eval_samples_per_second": 62.316, "step": 2384 }, { "epoch": 150.0, "learning_rate": 8.333333333333333e-05, "loss": 0.0069, "step": 2400 }, { "epoch": 150.0, "eval_accuracy": 64.28571428571429, "eval_average_metrics": 65.52991568186884, "eval_classification_report": "{\"0\": {\"precision\": 0.7297297297297297, \"recall\": 0.6923076923076923, \"f1-score\": 0.7105263157894737, \"support\": 39.0}, \"1\": {\"precision\": 0.43478260869565216, \"recall\": 0.625, \"f1-score\": 0.5128205128205128, \"support\": 16.0}, \"2\": {\"precision\": 0.26666666666666666, \"recall\": 0.2857142857142857, \"f1-score\": 0.2758620689655172, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6153846153846154, \"recall\": 0.6666666666666666, \"f1-score\": 0.64, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7042919013933506, \"recall\": 0.6767386934053601, \"f1-score\": 0.6845329110180896, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6718112351652724, \"recall\": 0.6428571428571429, \"f1-score\": 0.6509494305423784, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}}", "eval_f1_macro": 68.45329110180896, "eval_f1_micro": 64.28571428571429, "eval_f1_weighted": 65.09494305423785, "eval_loss": 1.6653668880462646, "eval_runtime": 2.3111, "eval_samples_per_second": 54.519, "step": 2400 }, { "epoch": 151.0, "learning_rate": 8.166666666666665e-05, "loss": 0.0059, "step": 2416 }, { "epoch": 151.0, "eval_accuracy": 63.49206349206349, "eval_average_metrics": 64.8617591125745, "eval_classification_report": "{\"0\": {\"precision\": 0.7647058823529411, \"recall\": 0.6666666666666666, \"f1-score\": 0.7123287671232877, \"support\": 39.0}, \"1\": {\"precision\": 0.38461538461538464, \"recall\": 0.625, \"f1-score\": 0.4761904761904762, \"support\": 16.0}, \"2\": {\"precision\": 0.21428571428571427, \"recall\": 0.21428571428571427, \"f1-score\": 0.21428571428571427, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6428571428571429, \"recall\": 0.75, \"f1-score\": 0.6923076923076924, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6349206349206349, \"recall\": 0.6349206349206349, \"f1-score\": 0.6349206349206349, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.6998364017971861, \"recall\": 0.6752124418791086, \"f1-score\": 0.6796333279438302, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6730630713823991, \"recall\": 0.6349206349206349, \"f1-score\": 0.6449957667178803, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6349206349206349, \"recall\": 0.6349206349206349, \"f1-score\": 0.6349206349206349, \"support\": 126.0}}", "eval_f1_macro": 67.96333279438302, "eval_f1_micro": 63.49206349206349, "eval_f1_weighted": 64.49957667178803, "eval_loss": 1.6856322288513184, "eval_runtime": 2.4553, "eval_samples_per_second": 51.317, "step": 2416 }, { "epoch": 152.0, "learning_rate": 7.999999999999999e-05, "loss": 0.0057, "step": 2432 }, { "epoch": 152.0, "eval_accuracy": 67.46031746031747, "eval_average_metrics": 68.36004142475115, "eval_classification_report": "{\"0\": {\"precision\": 0.7045454545454546, \"recall\": 0.7948717948717948, \"f1-score\": 0.746987951807229, \"support\": 39.0}, \"1\": {\"precision\": 0.6, \"recall\": 0.5625, \"f1-score\": 0.5806451612903225, \"support\": 16.0}, \"2\": {\"precision\": 0.26666666666666666, \"recall\": 0.2857142857142857, \"f1-score\": 0.2758620689655172, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.7272727272727273, \"recall\": 0.6666666666666666, \"f1-score\": 0.6956521739130435, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.68, \"recall\": 0.6746031746031746, \"f1-score\": 0.6772908366533866, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7233726150392817, \"recall\": 0.6885976677643344, \"f1-score\": 0.703144306680835, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.691065416065416, \"recall\": 0.6746031746031746, \"f1-score\": 0.6793633390526493, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}}", "eval_f1_macro": 70.3144306680835, "eval_f1_micro": 67.72908366533866, "eval_f1_weighted": 67.93633390526493, "eval_loss": 1.6689759492874146, "eval_runtime": 2.5408, "eval_samples_per_second": 49.591, "step": 2432 }, { "epoch": 153.0, "learning_rate": 7.833333333333333e-05, "loss": 0.004, "step": 2448 }, { "epoch": 153.0, "eval_accuracy": 64.28571428571429, "eval_average_metrics": 65.80647584219096, "eval_classification_report": "{\"0\": {\"precision\": 0.7368421052631579, \"recall\": 0.717948717948718, \"f1-score\": 0.7272727272727273, \"support\": 39.0}, \"1\": {\"precision\": 0.4166666666666667, \"recall\": 0.625, \"f1-score\": 0.5, \"support\": 16.0}, \"2\": {\"precision\": 0.2, \"recall\": 0.21428571428571427, \"f1-score\": 0.20689655172413796, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.7272727272727273, \"recall\": 0.6666666666666666, \"f1-score\": 0.6956521739130435, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.648, \"recall\": 0.6428571428571429, \"f1-score\": 0.6454183266932271, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7188963570542518, \"recall\": 0.671651188317855, \"f1-score\": 0.6885733764982376, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.681905295345145, \"recall\": 0.6428571428571429, \"f1-score\": 0.6554101876390311, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}}", "eval_f1_macro": 68.85733764982376, "eval_f1_micro": 64.5418326693227, "eval_f1_weighted": 65.54101876390311, "eval_loss": 1.6608428955078125, "eval_runtime": 2.1639, "eval_samples_per_second": 58.227, "step": 2448 }, { "epoch": 154.0, "learning_rate": 7.666666666666666e-05, "loss": 0.0064, "step": 2464 }, { "epoch": 154.0, "eval_accuracy": 67.46031746031747, "eval_average_metrics": 68.25085051884537, "eval_classification_report": "{\"0\": {\"precision\": 0.75, \"recall\": 0.7692307692307693, \"f1-score\": 0.7594936708860761, \"support\": 39.0}, \"1\": {\"precision\": 0.5263157894736842, \"recall\": 0.625, \"f1-score\": 0.5714285714285714, \"support\": 16.0}, \"2\": {\"precision\": 0.26666666666666666, \"recall\": 0.2857142857142857, \"f1-score\": 0.2758620689655172, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6428571428571429, \"recall\": 0.75, \"f1-score\": 0.6923076923076924, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7197670101178874, \"recall\": 0.6945449612116279, \"f1-score\": 0.7022977005750177, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6923250586784421, \"recall\": 0.6746031746031746, \"f1-score\": 0.6785299709724478, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}}", "eval_f1_macro": 70.22977005750177, "eval_f1_micro": 67.46031746031747, "eval_f1_weighted": 67.85299709724478, "eval_loss": 1.682400107383728, "eval_runtime": 1.9011, "eval_samples_per_second": 66.277, "step": 2464 }, { "epoch": 155.0, "learning_rate": 7.5e-05, "loss": 0.0045, "step": 2480 }, { "epoch": 155.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 67.43116833865201, "eval_classification_report": "{\"0\": {\"precision\": 0.75, \"recall\": 0.7692307692307693, \"f1-score\": 0.7594936708860761, \"support\": 39.0}, \"1\": {\"precision\": 0.47368421052631576, \"recall\": 0.5625, \"f1-score\": 0.5142857142857142, \"support\": 16.0}, \"2\": {\"precision\": 0.25, \"recall\": 0.21428571428571427, \"f1-score\": 0.23076923076923075, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6428571428571429, \"recall\": 0.75, \"f1-score\": 0.6923076923076924, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.672, \"recall\": 0.6666666666666666, \"f1-score\": 0.6693227091633466, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7031566711391273, \"recall\": 0.687071416238083, \"f1-score\": 0.6917786347111242, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6792031485640508, \"recall\": 0.6666666666666666, \"f1-score\": 0.6694787230049437, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 69.17786347111242, "eval_f1_micro": 66.93227091633466, "eval_f1_weighted": 66.94787230049437, "eval_loss": 1.6811338663101196, "eval_runtime": 2.2178, "eval_samples_per_second": 56.814, "step": 2480 }, { "epoch": 156.0, "learning_rate": 7.333333333333332e-05, "loss": 0.0032, "step": 2496 }, { "epoch": 156.0, "eval_accuracy": 64.28571428571429, "eval_average_metrics": 65.2713280638199, "eval_classification_report": "{\"0\": {\"precision\": 0.7647058823529411, \"recall\": 0.6666666666666666, \"f1-score\": 0.7123287671232877, \"support\": 39.0}, \"1\": {\"precision\": 0.38461538461538464, \"recall\": 0.625, \"f1-score\": 0.4761904761904762, \"support\": 16.0}, \"2\": {\"precision\": 0.25, \"recall\": 0.21428571428571427, \"f1-score\": 0.23076923076923075, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6428571428571429, \"recall\": 0.75, \"f1-score\": 0.6923076923076924, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 0.6666666666666666, \"recall\": 1.0, \"f1-score\": 0.8, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.648, \"recall\": 0.6428571428571429, \"f1-score\": 0.6454183266932271, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.6785801888743065, \"recall\": 0.682619849286516, \"f1-score\": 0.6697962079106318, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6797670155863433, \"recall\": 0.6428571428571429, \"f1-score\": 0.6527814450917939, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}}", "eval_f1_macro": 66.97962079106318, "eval_f1_micro": 64.5418326693227, "eval_f1_weighted": 65.2781445091794, "eval_loss": 1.6578482389450073, "eval_runtime": 2.5234, "eval_samples_per_second": 49.933, "step": 2496 }, { "epoch": 157.0, "learning_rate": 7.166666666666667e-05, "loss": 0.0023, "step": 2512 }, { "epoch": 157.0, "eval_accuracy": 64.28571428571429, "eval_average_metrics": 65.47174054344923, "eval_classification_report": "{\"0\": {\"precision\": 0.7428571428571429, \"recall\": 0.6666666666666666, \"f1-score\": 0.7027027027027027, \"support\": 39.0}, \"1\": {\"precision\": 0.4166666666666667, \"recall\": 0.625, \"f1-score\": 0.5, \"support\": 16.0}, \"2\": {\"precision\": 0.23076923076923078, \"recall\": 0.21428571428571427, \"f1-score\": 0.22222222222222224, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.6923076923076923, \"recall\": 0.75, \"f1-score\": 0.7199999999999999, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 0.6666666666666666, \"recall\": 1.0, \"f1-score\": 0.8, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6532258064516129, \"recall\": 0.6428571428571429, \"f1-score\": 0.648, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.6830715580715582, \"recall\": 0.682619849286516, \"f1-score\": 0.6734994033033249, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6796471385757099, \"recall\": 0.6428571428571429, \"f1-score\": 0.6545130755775014, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}}", "eval_f1_macro": 67.34994033033249, "eval_f1_micro": 64.8, "eval_f1_weighted": 65.45130755775014, "eval_loss": 1.6800843477249146, "eval_runtime": 2.4645, "eval_samples_per_second": 51.125, "step": 2512 }, { "epoch": 158.0, "learning_rate": 7e-05, "loss": 0.0032, "step": 2528 }, { "epoch": 158.0, "eval_accuracy": 69.04761904761905, "eval_average_metrics": 69.58615183885321, "eval_classification_report": "{\"0\": {\"precision\": 0.7560975609756098, \"recall\": 0.7948717948717948, \"f1-score\": 0.7749999999999999, \"support\": 39.0}, \"1\": {\"precision\": 0.5882352941176471, \"recall\": 0.625, \"f1-score\": 0.6060606060606061, \"support\": 16.0}, \"2\": {\"precision\": 0.25, \"recall\": 0.2857142857142857, \"f1-score\": 0.26666666666666666, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.75, \"recall\": 0.75, \"f1-score\": 0.75, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 0.6666666666666666, \"recall\": 1.0, \"f1-score\": 0.8, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.696, \"recall\": 0.6904761904761905, \"f1-score\": 0.6932270916334661, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7121529050151719, \"recall\": 0.7048013714680381, \"f1-score\": 0.7015885530591413, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7131631132374112, \"recall\": 0.6904761904761905, \"f1-score\": 0.6981542383853307, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6904761904761905, \"recall\": 0.6904761904761905, \"f1-score\": 0.6904761904761905, \"support\": 126.0}}", "eval_f1_macro": 70.15885530591413, "eval_f1_micro": 69.3227091633466, "eval_f1_weighted": 69.81542383853308, "eval_loss": 1.6976134777069092, "eval_runtime": 2.4021, "eval_samples_per_second": 52.455, "step": 2528 }, { "epoch": 159.0, "learning_rate": 6.833333333333333e-05, "loss": 0.0025, "step": 2544 }, { "epoch": 159.0, "eval_accuracy": 67.46031746031747, "eval_average_metrics": 68.03355928114294, "eval_classification_report": "{\"0\": {\"precision\": 0.7317073170731707, \"recall\": 0.7692307692307693, \"f1-score\": 0.7499999999999999, \"support\": 39.0}, \"1\": {\"precision\": 0.5555555555555556, \"recall\": 0.625, \"f1-score\": 0.5882352941176471, \"support\": 16.0}, \"2\": {\"precision\": 0.29411764705882354, \"recall\": 0.35714285714285715, \"f1-score\": 0.3225806451612903, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.75, \"recall\": 0.75, \"f1-score\": 0.75, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.6666666666666666, \"recall\": 0.5, \"f1-score\": 0.5714285714285715, \"support\": 8.0}, \"8\": {\"precision\": 0.6666666666666666, \"recall\": 1.0, \"f1-score\": 0.8, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.68, \"recall\": 0.6746031746031746, \"f1-score\": 0.6772908366533866, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7044126503356537, \"recall\": 0.688592580259247, \"f1-score\": 0.6869907532905635, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7022602220653392, \"recall\": 0.6746031746031746, \"f1-score\": 0.6824576066985932, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}}", "eval_f1_macro": 68.69907532905634, "eval_f1_micro": 67.72908366533866, "eval_f1_weighted": 68.24576066985932, "eval_loss": 1.6885069608688354, "eval_runtime": 2.5489, "eval_samples_per_second": 49.432, "step": 2544 }, { "epoch": 160.0, "learning_rate": 6.666666666666666e-05, "loss": 0.0027, "step": 2560 }, { "epoch": 160.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 67.47910033015827, "eval_classification_report": "{\"0\": {\"precision\": 0.7435897435897436, \"recall\": 0.7435897435897436, \"f1-score\": 0.7435897435897437, \"support\": 39.0}, \"1\": {\"precision\": 0.5, \"recall\": 0.625, \"f1-score\": 0.5555555555555556, \"support\": 16.0}, \"2\": {\"precision\": 0.25, \"recall\": 0.2857142857142857, \"f1-score\": 0.26666666666666666, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.75, \"recall\": 0.75, \"f1-score\": 0.75, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 0.6666666666666666, \"recall\": 1.0, \"f1-score\": 0.8, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.672, \"recall\": 0.6666666666666666, \"f1-score\": 0.6693227091633466, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.699949124949125, \"recall\": 0.6916959583626251, \"f1-score\": 0.6870167668206885, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6970049130763416, \"recall\": 0.6666666666666666, \"f1-score\": 0.6761578705556297, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 68.70167668206885, "eval_f1_micro": 66.93227091633466, "eval_f1_weighted": 67.61578705556298, "eval_loss": 1.6966967582702637, "eval_runtime": 2.597, "eval_samples_per_second": 48.518, "step": 2560 }, { "epoch": 161.0, "learning_rate": 6.5e-05, "loss": 0.0062, "step": 2576 }, { "epoch": 161.0, "eval_accuracy": 67.46031746031747, "eval_average_metrics": 68.13776767085103, "eval_classification_report": "{\"0\": {\"precision\": 0.6956521739130435, \"recall\": 0.8205128205128205, \"f1-score\": 0.7529411764705882, \"support\": 39.0}, \"1\": {\"precision\": 0.5, \"recall\": 0.625, \"f1-score\": 0.5555555555555556, \"support\": 16.0}, \"2\": {\"precision\": 0.25, \"recall\": 0.21428571428571427, \"f1-score\": 0.23076923076923075, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 0.6666666666666666, \"recall\": 0.5, \"f1-score\": 0.5714285714285715, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.68, \"recall\": 0.6746031746031746, \"f1-score\": 0.6772908366533866, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7322329575952764, \"recall\": 0.6784175700842368, \"f1-score\": 0.6981996652584888, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6917759374281113, \"recall\": 0.6746031746031746, \"f1-score\": 0.6754170303189911, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}}", "eval_f1_macro": 69.81996652584887, "eval_f1_micro": 67.72908366533866, "eval_f1_weighted": 67.54170303189912, "eval_loss": 1.7208225727081299, "eval_runtime": 2.7554, "eval_samples_per_second": 45.728, "step": 2576 }, { "epoch": 162.0, "learning_rate": 6.333333333333333e-05, "loss": 0.0035, "step": 2592 }, { "epoch": 162.0, "eval_accuracy": 65.07936507936508, "eval_average_metrics": 66.1697293556673, "eval_classification_report": "{\"0\": {\"precision\": 0.7368421052631579, \"recall\": 0.717948717948718, \"f1-score\": 0.7272727272727273, \"support\": 39.0}, \"1\": {\"precision\": 0.4, \"recall\": 0.625, \"f1-score\": 0.48780487804878053, \"support\": 16.0}, \"2\": {\"precision\": 0.21428571428571427, \"recall\": 0.21428571428571427, \"f1-score\": 0.21428571428571427, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 0.6666666666666666, \"recall\": 1.0, \"f1-score\": 0.8, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.656, \"recall\": 0.6507936507936508, \"f1-score\": 0.653386454183267, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7007866889445836, \"recall\": 0.6809104475771143, \"f1-score\": 0.6794315637070301, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6925354059752555, \"recall\": 0.6507936507936508, \"f1-score\": 0.6631775055427442, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6507936507936508, \"recall\": 0.6507936507936508, \"f1-score\": 0.6507936507936508, \"support\": 126.0}}", "eval_f1_macro": 67.94315637070301, "eval_f1_micro": 65.3386454183267, "eval_f1_weighted": 66.31775055427443, "eval_loss": 1.6977514028549194, "eval_runtime": 1.483, "eval_samples_per_second": 84.962, "step": 2592 }, { "epoch": 163.0, "learning_rate": 6.166666666666666e-05, "loss": 0.0024, "step": 2608 }, { "epoch": 163.0, "eval_accuracy": 65.87301587301587, "eval_average_metrics": 66.95505176076139, "eval_classification_report": "{\"0\": {\"precision\": 0.7297297297297297, \"recall\": 0.6923076923076923, \"f1-score\": 0.7105263157894737, \"support\": 39.0}, \"1\": {\"precision\": 0.47619047619047616, \"recall\": 0.625, \"f1-score\": 0.5405405405405405, \"support\": 16.0}, \"2\": {\"precision\": 0.29411764705882354, \"recall\": 0.35714285714285715, \"f1-score\": 0.3225806451612903, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.75, \"recall\": 0.75, \"f1-score\": 0.75, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 0.6666666666666666, \"recall\": 1.0, \"f1-score\": 0.8, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.664, \"recall\": 0.6587301587301587, \"f1-score\": 0.6613545816733067, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7006655815479346, \"recall\": 0.6939344606011273, \"f1-score\": 0.6878873818961704, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6945934379757909, \"recall\": 0.6587301587301587, \"f1-score\": 0.6702299481308198, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}}", "eval_f1_macro": 68.78873818961704, "eval_f1_micro": 66.13545816733067, "eval_f1_weighted": 67.02299481308198, "eval_loss": 1.7211140394210815, "eval_runtime": 1.8224, "eval_samples_per_second": 69.14, "step": 2608 }, { "epoch": 164.0, "learning_rate": 5.9999999999999995e-05, "loss": 0.0016, "step": 2624 }, { "epoch": 164.0, "eval_accuracy": 64.28571428571429, "eval_average_metrics": 65.31686874325695, "eval_classification_report": "{\"0\": {\"precision\": 0.7297297297297297, \"recall\": 0.6923076923076923, \"f1-score\": 0.7105263157894737, \"support\": 39.0}, \"1\": {\"precision\": 0.4166666666666667, \"recall\": 0.625, \"f1-score\": 0.5, \"support\": 16.0}, \"2\": {\"precision\": 0.21428571428571427, \"recall\": 0.21428571428571427, \"f1-score\": 0.21428571428571427, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.75, \"recall\": 0.75, \"f1-score\": 0.75, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 0.6666666666666666, \"recall\": 1.0, \"f1-score\": 0.8, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.648, \"recall\": 0.6428571428571429, \"f1-score\": 0.6454183266932271, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.6851816101816103, \"recall\": 0.6780614447281114, \"f1-score\": 0.6713501072943797, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6781646442360727, \"recall\": 0.6428571428571429, \"f1-score\": 0.6530491728855286, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}}", "eval_f1_macro": 67.13501072943797, "eval_f1_micro": 64.5418326693227, "eval_f1_weighted": 65.30491728855286, "eval_loss": 1.7080442905426025, "eval_runtime": 2.3099, "eval_samples_per_second": 54.548, "step": 2624 }, { "epoch": 165.0, "learning_rate": 5.8333333333333326e-05, "loss": 0.0028, "step": 2640 }, { "epoch": 165.0, "eval_accuracy": 65.07936507936508, "eval_average_metrics": 66.27887462677378, "eval_classification_report": "{\"0\": {\"precision\": 0.717948717948718, \"recall\": 0.717948717948718, \"f1-score\": 0.717948717948718, \"support\": 39.0}, \"1\": {\"precision\": 0.43478260869565216, \"recall\": 0.625, \"f1-score\": 0.5128205128205128, \"support\": 16.0}, \"2\": {\"precision\": 0.21428571428571427, \"recall\": 0.21428571428571427, \"f1-score\": 0.21428571428571427, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.8888888888888888, \"recall\": 0.6666666666666666, \"f1-score\": 0.761904761904762, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 0.6666666666666666, \"recall\": 1.0, \"f1-score\": 0.8, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6612903225806451, \"recall\": 0.6507936507936508, \"f1-score\": 0.656, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7023276910958071, \"recall\": 0.6790585957252624, \"f1-score\": 0.6803921568627451, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6911283419823793, \"recall\": 0.6507936507936508, \"f1-score\": 0.6639691774145555, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6507936507936508, \"recall\": 0.6507936507936508, \"f1-score\": 0.6507936507936508, \"support\": 126.0}}", "eval_f1_macro": 68.03921568627452, "eval_f1_micro": 65.60000000000001, "eval_f1_weighted": 66.39691774145555, "eval_loss": 1.7015186548233032, "eval_runtime": 2.4076, "eval_samples_per_second": 52.333, "step": 2640 }, { "epoch": 166.0, "learning_rate": 5.666666666666666e-05, "loss": 0.0025, "step": 2656 }, { "epoch": 166.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 67.61714396566424, "eval_classification_report": "{\"0\": {\"precision\": 0.7435897435897436, \"recall\": 0.7435897435897436, \"f1-score\": 0.7435897435897437, \"support\": 39.0}, \"1\": {\"precision\": 0.47619047619047616, \"recall\": 0.625, \"f1-score\": 0.5405405405405405, \"support\": 16.0}, \"2\": {\"precision\": 0.21428571428571427, \"recall\": 0.21428571428571427, \"f1-score\": 0.21428571428571427, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.8181818181818182, \"recall\": 0.75, \"f1-score\": 0.7826086956521738, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 0.6666666666666666, \"recall\": 1.0, \"f1-score\": 0.8, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6774193548387096, \"recall\": 0.6666666666666666, \"f1-score\": 0.6719999999999999, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.701921226921227, \"recall\": 0.6911668578335246, \"f1-score\": 0.6886215998747968, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.697588985088985, \"recall\": 0.6666666666666666, \"f1-score\": 0.6773974920851062, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 68.86215998747967, "eval_f1_micro": 67.19999999999999, "eval_f1_weighted": 67.73974920851063, "eval_loss": 1.7137162685394287, "eval_runtime": 2.1103, "eval_samples_per_second": 59.706, "step": 2656 }, { "epoch": 167.0, "learning_rate": 5.499999999999999e-05, "loss": 0.0034, "step": 2672 }, { "epoch": 167.0, "eval_accuracy": 65.07936507936508, "eval_average_metrics": 66.05880722724781, "eval_classification_report": "{\"0\": {\"precision\": 0.7368421052631579, \"recall\": 0.717948717948718, \"f1-score\": 0.7272727272727273, \"support\": 39.0}, \"1\": {\"precision\": 0.4166666666666667, \"recall\": 0.625, \"f1-score\": 0.5, \"support\": 16.0}, \"2\": {\"precision\": 0.21428571428571427, \"recall\": 0.21428571428571427, \"f1-score\": 0.21428571428571427, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.9, \"recall\": 0.8181818181818182, \"f1-score\": 0.8571428571428572, \"support\": 11.0}, \"5\": {\"precision\": 0.8181818181818182, \"recall\": 0.75, \"f1-score\": 0.7826086956521738, \"support\": 12.0}, \"6\": {\"precision\": 0.875, \"recall\": 0.7777777777777778, \"f1-score\": 0.823529411764706, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 0.6666666666666666, \"recall\": 1.0, \"f1-score\": 0.8, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.656, \"recall\": 0.6507936507936508, \"f1-score\": 0.653386454183267, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.6935476317055265, \"recall\": 0.6809104475771143, \"f1-score\": 0.676834008087205, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6868596002994498, \"recall\": 0.6507936507936508, \"f1-score\": 0.66133817602579, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6507936507936508, \"recall\": 0.6507936507936508, \"f1-score\": 0.6507936507936508, \"support\": 126.0}}", "eval_f1_macro": 67.68340080872049, "eval_f1_micro": 65.3386454183267, "eval_f1_weighted": 66.133817602579, "eval_loss": 1.7169686555862427, "eval_runtime": 2.7645, "eval_samples_per_second": 45.578, "step": 2672 }, { "epoch": 168.0, "learning_rate": 5.333333333333333e-05, "loss": 0.0101, "step": 2688 }, { "epoch": 168.0, "eval_accuracy": 68.25396825396825, "eval_average_metrics": 68.77784134373603, "eval_classification_report": "{\"0\": {\"precision\": 0.7209302325581395, \"recall\": 0.7948717948717948, \"f1-score\": 0.7560975609756098, \"support\": 39.0}, \"1\": {\"precision\": 0.47619047619047616, \"recall\": 0.625, \"f1-score\": 0.5405405405405405, \"support\": 16.0}, \"2\": {\"precision\": 0.25, \"recall\": 0.21428571428571427, \"f1-score\": 0.23076923076923075, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.8181818181818182, \"recall\": 0.75, \"f1-score\": 0.7826086956521738, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 0.6666666666666666, \"recall\": 1.0, \"f1-score\": 0.8, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.688, \"recall\": 0.6825396825396826, \"f1-score\": 0.6852589641434262, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7172606463304139, \"recall\": 0.6995584662251328, \"f1-score\": 0.6978637337439034, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7031835520207613, \"recall\": 0.6825396825396826, \"f1-score\": 0.6854512733224292, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}}", "eval_f1_macro": 69.78637337439034, "eval_f1_micro": 68.52589641434263, "eval_f1_weighted": 68.54512733224291, "eval_loss": 1.7332700490951538, "eval_runtime": 2.7488, "eval_samples_per_second": 45.838, "step": 2688 }, { "epoch": 169.0, "learning_rate": 5.1666666666666664e-05, "loss": 0.0036, "step": 2704 }, { "epoch": 169.0, "eval_accuracy": 65.87301587301587, "eval_average_metrics": 67.13000934250934, "eval_classification_report": "{\"0\": {\"precision\": 0.75, \"recall\": 0.6923076923076923, \"f1-score\": 0.7199999999999999, \"support\": 39.0}, \"1\": {\"precision\": 0.43478260869565216, \"recall\": 0.625, \"f1-score\": 0.5128205128205128, \"support\": 16.0}, \"2\": {\"precision\": 0.21428571428571427, \"recall\": 0.21428571428571427, \"f1-score\": 0.21428571428571427, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.75, \"recall\": 0.75, \"f1-score\": 0.75, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 0.6666666666666666, \"recall\": 1.0, \"f1-score\": 0.8, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6693548387096774, \"recall\": 0.6587301587301587, \"f1-score\": 0.6639999999999999, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7053558357906184, \"recall\": 0.6955698622365288, \"f1-score\": 0.6907882857882858, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6975436858977231, \"recall\": 0.6587301587301587, \"f1-score\": 0.6716819291819291, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}}", "eval_f1_macro": 69.07882857882858, "eval_f1_micro": 66.39999999999999, "eval_f1_weighted": 67.16819291819291, "eval_loss": 1.720420002937317, "eval_runtime": 2.7776, "eval_samples_per_second": 45.363, "step": 2704 }, { "epoch": 170.0, "learning_rate": 4.9999999999999996e-05, "loss": 0.0049, "step": 2720 }, { "epoch": 170.0, "eval_accuracy": 64.28571428571429, "eval_average_metrics": 65.59360925645251, "eval_classification_report": "{\"0\": {\"precision\": 0.7297297297297297, \"recall\": 0.6923076923076923, \"f1-score\": 0.7105263157894737, \"support\": 39.0}, \"1\": {\"precision\": 0.4166666666666667, \"recall\": 0.625, \"f1-score\": 0.5, \"support\": 16.0}, \"2\": {\"precision\": 0.21428571428571427, \"recall\": 0.21428571428571427, \"f1-score\": 0.21428571428571427, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.7272727272727273, \"recall\": 0.6666666666666666, \"f1-score\": 0.6956521739130435, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 0.6666666666666666, \"recall\": 1.0, \"f1-score\": 0.8, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6532258064516129, \"recall\": 0.6428571428571429, \"f1-score\": 0.648, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.6975553475553476, \"recall\": 0.6789031955698621, \"f1-score\": 0.6768024199717564, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6857223642937929, \"recall\": 0.6428571428571429, \"f1-score\": 0.6560848074292011, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6428571428571429, \"recall\": 0.6428571428571429, \"f1-score\": 0.6428571428571429, \"support\": 126.0}}", "eval_f1_macro": 67.68024199717564, "eval_f1_micro": 64.8, "eval_f1_weighted": 65.60848074292011, "eval_loss": 1.709500789642334, "eval_runtime": 2.5478, "eval_samples_per_second": 49.454, "step": 2720 }, { "epoch": 171.0, "learning_rate": 4.8333333333333334e-05, "loss": 0.0037, "step": 2736 }, { "epoch": 171.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 67.71576974142764, "eval_classification_report": "{\"0\": {\"precision\": 0.7567567567567568, \"recall\": 0.717948717948718, \"f1-score\": 0.736842105263158, \"support\": 39.0}, \"1\": {\"precision\": 0.47619047619047616, \"recall\": 0.625, \"f1-score\": 0.5405405405405405, \"support\": 16.0}, \"2\": {\"precision\": 0.21428571428571427, \"recall\": 0.21428571428571427, \"f1-score\": 0.21428571428571427, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.6923076923076923, \"recall\": 0.75, \"f1-score\": 0.7199999999999999, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 0.6666666666666666, \"recall\": 1.0, \"f1-score\": 0.8, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6774193548387096, \"recall\": 0.6666666666666666, \"f1-score\": 0.6719999999999999, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7042972042972042, \"recall\": 0.6984188650855317, \"f1-score\": 0.6924063005641954, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6993986993986995, \"recall\": 0.6666666666666666, \"f1-score\": 0.6775578224262434, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 69.24063005641953, "eval_f1_micro": 67.19999999999999, "eval_f1_weighted": 67.75578224262433, "eval_loss": 1.7123057842254639, "eval_runtime": 2.1834, "eval_samples_per_second": 57.709, "step": 2736 }, { "epoch": 172.0, "learning_rate": 4.6666666666666665e-05, "loss": 0.0022, "step": 2752 }, { "epoch": 172.0, "eval_accuracy": 65.87301587301587, "eval_average_metrics": 66.89416599482388, "eval_classification_report": "{\"0\": {\"precision\": 0.7567567567567568, \"recall\": 0.717948717948718, \"f1-score\": 0.736842105263158, \"support\": 39.0}, \"1\": {\"precision\": 0.45, \"recall\": 0.5625, \"f1-score\": 0.5, \"support\": 16.0}, \"2\": {\"precision\": 0.21428571428571427, \"recall\": 0.21428571428571427, \"f1-score\": 0.21428571428571427, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.6923076923076923, \"recall\": 0.75, \"f1-score\": 0.7199999999999999, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.625, \"recall\": 0.625, \"f1-score\": 0.625, \"support\": 8.0}, \"8\": {\"precision\": 0.6666666666666666, \"recall\": 1.0, \"f1-score\": 0.8, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6693548387096774, \"recall\": 0.6587301587301587, \"f1-score\": 0.6639999999999999, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.6914665164665164, \"recall\": 0.6914744206410872, \"f1-score\": 0.6832721664300611, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6904039904039905, \"recall\": 0.6587301587301587, \"f1-score\": 0.6697643146327357, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}}", "eval_f1_macro": 68.32721664300611, "eval_f1_micro": 66.39999999999999, "eval_f1_weighted": 66.97643146327357, "eval_loss": 1.7362046241760254, "eval_runtime": 1.9768, "eval_samples_per_second": 63.739, "step": 2752 }, { "epoch": 173.0, "learning_rate": 4.4999999999999996e-05, "loss": 0.0048, "step": 2768 }, { "epoch": 173.0, "eval_accuracy": 65.87301587301587, "eval_average_metrics": 67.00645167718966, "eval_classification_report": "{\"0\": {\"precision\": 0.7368421052631579, \"recall\": 0.717948717948718, \"f1-score\": 0.7272727272727273, \"support\": 39.0}, \"1\": {\"precision\": 0.45454545454545453, \"recall\": 0.625, \"f1-score\": 0.5263157894736842, \"support\": 16.0}, \"2\": {\"precision\": 0.21428571428571427, \"recall\": 0.21428571428571427, \"f1-score\": 0.21428571428571427, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.7272727272727273, \"recall\": 0.6666666666666666, \"f1-score\": 0.6956521739130435, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 0.6666666666666666, \"recall\": 1.0, \"f1-score\": 0.8, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6693548387096774, \"recall\": 0.6587301587301587, \"f1-score\": 0.6639999999999999, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7035644667223615, \"recall\": 0.6891596058262724, \"f1-score\": 0.6870571944370572, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6938160697559194, \"recall\": 0.6587301587301587, \"f1-score\": 0.6704707139203707, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}}", "eval_f1_macro": 68.70571944370572, "eval_f1_micro": 66.39999999999999, "eval_f1_weighted": 67.04707139203707, "eval_loss": 1.7273552417755127, "eval_runtime": 2.1281, "eval_samples_per_second": 59.207, "step": 2768 }, { "epoch": 174.0, "learning_rate": 4.333333333333333e-05, "loss": 0.0032, "step": 2784 }, { "epoch": 174.0, "eval_accuracy": 65.07936507936508, "eval_average_metrics": 67.12965699106363, "eval_classification_report": "{\"0\": {\"precision\": 0.717948717948718, \"recall\": 0.717948717948718, \"f1-score\": 0.717948717948718, \"support\": 39.0}, \"1\": {\"precision\": 0.4, \"recall\": 0.625, \"f1-score\": 0.48780487804878053, \"support\": 16.0}, \"2\": {\"precision\": 0.2, \"recall\": 0.21428571428571427, \"f1-score\": 0.20689655172413796, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.6666666666666666, \"f1-score\": 0.8, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6612903225806451, \"recall\": 0.6507936507936508, \"f1-score\": 0.656, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7601472601472602, \"recall\": 0.681752198418865, \"f1-score\": 0.7092675248310236, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7096371882086168, \"recall\": 0.6507936507936508, \"f1-score\": 0.6691251040178711, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6507936507936508, \"recall\": 0.6507936507936508, \"f1-score\": 0.6507936507936508, \"support\": 126.0}}", "eval_f1_macro": 70.92675248310236, "eval_f1_micro": 65.60000000000001, "eval_f1_weighted": 66.9125104017871, "eval_loss": 1.7348871231079102, "eval_runtime": 1.874, "eval_samples_per_second": 67.235, "step": 2784 }, { "epoch": 175.0, "learning_rate": 4.1666666666666665e-05, "loss": 0.003, "step": 2800 }, { "epoch": 175.0, "eval_accuracy": 65.87301587301587, "eval_average_metrics": 67.32703463622454, "eval_classification_report": "{\"0\": {\"precision\": 0.7368421052631579, \"recall\": 0.717948717948718, \"f1-score\": 0.7272727272727273, \"support\": 39.0}, \"1\": {\"precision\": 0.4, \"recall\": 0.625, \"f1-score\": 0.48780487804878053, \"support\": 16.0}, \"2\": {\"precision\": 0.21428571428571427, \"recall\": 0.21428571428571427, \"f1-score\": 0.21428571428571427, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.75, \"f1-score\": 0.8571428571428571, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 0.6666666666666666, \"recall\": 1.0, \"f1-score\": 0.8, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6693548387096774, \"recall\": 0.6587301587301587, \"f1-score\": 0.6639999999999999, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7267967899546847, \"recall\": 0.6910114576781243, \"f1-score\": 0.6952515280564061, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7117814377212873, \"recall\": 0.6587301587301587, \"f1-score\": 0.6750996986624164, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}}", "eval_f1_macro": 69.52515280564062, "eval_f1_micro": 66.39999999999999, "eval_f1_weighted": 67.50996986624163, "eval_loss": 1.7490099668502808, "eval_runtime": 2.0051, "eval_samples_per_second": 62.838, "step": 2800 }, { "epoch": 176.0, "learning_rate": 3.9999999999999996e-05, "loss": 0.0043, "step": 2816 }, { "epoch": 176.0, "eval_accuracy": 65.87301587301587, "eval_average_metrics": 67.22667551330902, "eval_classification_report": "{\"0\": {\"precision\": 0.7567567567567568, \"recall\": 0.717948717948718, \"f1-score\": 0.736842105263158, \"support\": 39.0}, \"1\": {\"precision\": 0.4, \"recall\": 0.625, \"f1-score\": 0.48780487804878053, \"support\": 16.0}, \"2\": {\"precision\": 0.21428571428571427, \"recall\": 0.21428571428571427, \"f1-score\": 0.21428571428571427, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 0.6666666666666666, \"recall\": 1.0, \"f1-score\": 0.8, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6693548387096774, \"recall\": 0.6587301587301587, \"f1-score\": 0.6639999999999999, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7178984178984179, \"recall\": 0.6910114576781243, \"f1-score\": 0.6919857879485608, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7084216869931155, \"recall\": 0.6587301587301587, \"f1-score\": 0.6743510738536413, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}}", "eval_f1_macro": 69.19857879485608, "eval_f1_micro": 66.39999999999999, "eval_f1_weighted": 67.43510738536413, "eval_loss": 1.7039285898208618, "eval_runtime": 1.6429, "eval_samples_per_second": 76.695, "step": 2816 }, { "epoch": 177.0, "learning_rate": 3.833333333333333e-05, "loss": 0.004, "step": 2832 }, { "epoch": 177.0, "eval_accuracy": 65.87301587301587, "eval_average_metrics": 66.97394408789047, "eval_classification_report": "{\"0\": {\"precision\": 0.7777777777777778, \"recall\": 0.717948717948718, \"f1-score\": 0.7466666666666666, \"support\": 39.0}, \"1\": {\"precision\": 0.35714285714285715, \"recall\": 0.625, \"f1-score\": 0.45454545454545453, \"support\": 16.0}, \"2\": {\"precision\": 0.25, \"recall\": 0.21428571428571427, \"f1-score\": 0.23076923076923075, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.8181818181818182, \"recall\": 0.75, \"f1-score\": 0.7826086956521738, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 0.6666666666666666, \"recall\": 1.0, \"f1-score\": 0.8, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.664, \"recall\": 0.6587301587301587, \"f1-score\": 0.6613545816733067, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7103495270161937, \"recall\": 0.6910114576781243, \"f1-score\": 0.6872608470434557, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7056620628049198, \"recall\": 0.6587301587301587, \"f1-score\": 0.6716121760686978, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}}", "eval_f1_macro": 68.72608470434557, "eval_f1_micro": 66.13545816733067, "eval_f1_weighted": 67.16121760686978, "eval_loss": 1.689574956893921, "eval_runtime": 1.9831, "eval_samples_per_second": 63.536, "step": 2832 }, { "epoch": 178.0, "learning_rate": 3.666666666666666e-05, "loss": 0.0047, "step": 2848 }, { "epoch": 178.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 67.9566327191327, "eval_classification_report": "{\"0\": {\"precision\": 0.7368421052631579, \"recall\": 0.717948717948718, \"f1-score\": 0.7272727272727273, \"support\": 39.0}, \"1\": {\"precision\": 0.43478260869565216, \"recall\": 0.625, \"f1-score\": 0.5128205128205128, \"support\": 16.0}, \"2\": {\"precision\": 0.21428571428571427, \"recall\": 0.21428571428571427, \"f1-score\": 0.21428571428571427, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 0.6666666666666666, \"recall\": 1.0, \"f1-score\": 0.8, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6774193548387096, \"recall\": 0.6666666666666666, \"f1-score\": 0.6719999999999999, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7205605141531916, \"recall\": 0.6984188650855317, \"f1-score\": 0.6991721241721242, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7077567184791768, \"recall\": 0.6666666666666666, \"f1-score\": 0.6804265179265179, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 69.91721241721241, "eval_f1_micro": 67.19999999999999, "eval_f1_weighted": 68.04265179265178, "eval_loss": 1.7131803035736084, "eval_runtime": 2.2821, "eval_samples_per_second": 55.211, "step": 2848 }, { "epoch": 179.0, "learning_rate": 3.5e-05, "loss": 0.0063, "step": 2864 }, { "epoch": 179.0, "eval_accuracy": 69.04761904761905, "eval_average_metrics": 69.54076763183906, "eval_classification_report": "{\"0\": {\"precision\": 0.7111111111111111, \"recall\": 0.8205128205128205, \"f1-score\": 0.7619047619047619, \"support\": 39.0}, \"1\": {\"precision\": 0.5263157894736842, \"recall\": 0.625, \"f1-score\": 0.5714285714285714, \"support\": 16.0}, \"2\": {\"precision\": 0.25, \"recall\": 0.21428571428571427, \"f1-score\": 0.23076923076923075, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.6666666666666666, \"recall\": 0.5, \"f1-score\": 0.5714285714285715, \"support\": 8.0}, \"8\": {\"precision\": 0.6666666666666666, \"recall\": 1.0, \"f1-score\": 0.8, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.7016129032258065, \"recall\": 0.6904761904761905, \"f1-score\": 0.696, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7265491168999941, \"recall\": 0.6959259875926542, \"f1-score\": 0.7007816257816257, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.712360446570973, \"recall\": 0.6904761904761905, \"f1-score\": 0.6943728890157461, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6904761904761905, \"recall\": 0.6904761904761905, \"f1-score\": 0.6904761904761905, \"support\": 126.0}}", "eval_f1_macro": 70.07816257816258, "eval_f1_micro": 69.6, "eval_f1_weighted": 69.43728890157462, "eval_loss": 1.7250123023986816, "eval_runtime": 2.6529, "eval_samples_per_second": 47.495, "step": 2864 }, { "epoch": 180.0, "learning_rate": 3.333333333333333e-05, "loss": 0.0039, "step": 2880 }, { "epoch": 180.0, "eval_accuracy": 65.07936507936508, "eval_average_metrics": 66.15191123433155, "eval_classification_report": "{\"0\": {\"precision\": 0.75, \"recall\": 0.6923076923076923, \"f1-score\": 0.7199999999999999, \"support\": 39.0}, \"1\": {\"precision\": 0.4166666666666667, \"recall\": 0.625, \"f1-score\": 0.5, \"support\": 16.0}, \"2\": {\"precision\": 0.21428571428571427, \"recall\": 0.21428571428571427, \"f1-score\": 0.21428571428571427, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.6923076923076923, \"recall\": 0.75, \"f1-score\": 0.7199999999999999, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 0.6666666666666666, \"recall\": 1.0, \"f1-score\": 0.8, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.656, \"recall\": 0.6507936507936508, \"f1-score\": 0.653386454183267, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.695922595922596, \"recall\": 0.6881624548291215, \"f1-score\": 0.6805603655603655, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6886664922379208, \"recall\": 0.6507936507936508, \"f1-score\": 0.6613359788359787, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6507936507936508, \"recall\": 0.6507936507936508, \"f1-score\": 0.6507936507936508, \"support\": 126.0}}", "eval_f1_macro": 68.05603655603655, "eval_f1_micro": 65.3386454183267, "eval_f1_weighted": 66.13359788359787, "eval_loss": 1.709094524383545, "eval_runtime": 2.4414, "eval_samples_per_second": 51.61, "step": 2880 }, { "epoch": 181.0, "learning_rate": 3.1666666666666666e-05, "loss": 0.0038, "step": 2896 }, { "epoch": 181.0, "eval_accuracy": 65.07936507936508, "eval_average_metrics": 66.18163782503375, "eval_classification_report": "{\"0\": {\"precision\": 0.7714285714285715, \"recall\": 0.6923076923076923, \"f1-score\": 0.7297297297297296, \"support\": 39.0}, \"1\": {\"precision\": 0.4, \"recall\": 0.625, \"f1-score\": 0.48780487804878053, \"support\": 16.0}, \"2\": {\"precision\": 0.21428571428571427, \"recall\": 0.21428571428571427, \"f1-score\": 0.21428571428571427, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.6923076923076923, \"recall\": 0.75, \"f1-score\": 0.7199999999999999, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 0.6666666666666666, \"recall\": 1.0, \"f1-score\": 0.8, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.656, \"recall\": 0.6507936507936508, \"f1-score\": 0.653386454183267, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.6964516964516965, \"recall\": 0.6881624548291215, \"f1-score\": 0.6802864330913111, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6931827431827432, \"recall\": 0.6507936507936508, \"f1-score\": 0.6627989749331212, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6507936507936508, \"recall\": 0.6507936507936508, \"f1-score\": 0.6507936507936508, \"support\": 126.0}}", "eval_f1_macro": 68.02864330913111, "eval_f1_micro": 65.3386454183267, "eval_f1_weighted": 66.27989749331212, "eval_loss": 1.7048972845077515, "eval_runtime": 2.2598, "eval_samples_per_second": 55.757, "step": 2896 }, { "epoch": 182.0, "learning_rate": 2.9999999999999997e-05, "loss": 0.0015, "step": 2912 }, { "epoch": 182.0, "eval_accuracy": 65.07936507936508, "eval_average_metrics": 66.15191123433155, "eval_classification_report": "{\"0\": {\"precision\": 0.75, \"recall\": 0.6923076923076923, \"f1-score\": 0.7199999999999999, \"support\": 39.0}, \"1\": {\"precision\": 0.4166666666666667, \"recall\": 0.625, \"f1-score\": 0.5, \"support\": 16.0}, \"2\": {\"precision\": 0.21428571428571427, \"recall\": 0.21428571428571427, \"f1-score\": 0.21428571428571427, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.6923076923076923, \"recall\": 0.75, \"f1-score\": 0.7199999999999999, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 0.6666666666666666, \"recall\": 1.0, \"f1-score\": 0.8, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.656, \"recall\": 0.6507936507936508, \"f1-score\": 0.653386454183267, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.695922595922596, \"recall\": 0.6881624548291215, \"f1-score\": 0.6805603655603655, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6886664922379208, \"recall\": 0.6507936507936508, \"f1-score\": 0.6613359788359787, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6507936507936508, \"recall\": 0.6507936507936508, \"f1-score\": 0.6507936507936508, \"support\": 126.0}}", "eval_f1_macro": 68.05603655603655, "eval_f1_micro": 65.3386454183267, "eval_f1_weighted": 66.13359788359787, "eval_loss": 1.7048794031143188, "eval_runtime": 2.0316, "eval_samples_per_second": 62.02, "step": 2912 }, { "epoch": 183.0, "learning_rate": 2.833333333333333e-05, "loss": 0.0029, "step": 2928 }, { "epoch": 183.0, "eval_accuracy": 65.07936507936508, "eval_average_metrics": 66.15191123433155, "eval_classification_report": "{\"0\": {\"precision\": 0.75, \"recall\": 0.6923076923076923, \"f1-score\": 0.7199999999999999, \"support\": 39.0}, \"1\": {\"precision\": 0.4166666666666667, \"recall\": 0.625, \"f1-score\": 0.5, \"support\": 16.0}, \"2\": {\"precision\": 0.21428571428571427, \"recall\": 0.21428571428571427, \"f1-score\": 0.21428571428571427, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.6923076923076923, \"recall\": 0.75, \"f1-score\": 0.7199999999999999, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 0.6666666666666666, \"recall\": 1.0, \"f1-score\": 0.8, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.656, \"recall\": 0.6507936507936508, \"f1-score\": 0.653386454183267, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.695922595922596, \"recall\": 0.6881624548291215, \"f1-score\": 0.6805603655603655, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6886664922379208, \"recall\": 0.6507936507936508, \"f1-score\": 0.6613359788359787, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6507936507936508, \"recall\": 0.6507936507936508, \"f1-score\": 0.6507936507936508, \"support\": 126.0}}", "eval_f1_macro": 68.05603655603655, "eval_f1_micro": 65.3386454183267, "eval_f1_weighted": 66.13359788359787, "eval_loss": 1.7060325145721436, "eval_runtime": 2.2934, "eval_samples_per_second": 54.939, "step": 2928 }, { "epoch": 184.0, "learning_rate": 2.6666666666666667e-05, "loss": 0.0018, "step": 2944 }, { "epoch": 184.0, "eval_accuracy": 65.87301587301587, "eval_average_metrics": 66.84658386442041, "eval_classification_report": "{\"0\": {\"precision\": 0.75, \"recall\": 0.6923076923076923, \"f1-score\": 0.7199999999999999, \"support\": 39.0}, \"1\": {\"precision\": 0.45454545454545453, \"recall\": 0.625, \"f1-score\": 0.5263157894736842, \"support\": 16.0}, \"2\": {\"precision\": 0.21428571428571427, \"recall\": 0.21428571428571427, \"f1-score\": 0.21428571428571427, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.6428571428571429, \"recall\": 0.75, \"f1-score\": 0.6923076923076924, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 0.6666666666666666, \"recall\": 1.0, \"f1-score\": 0.8, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.664, \"recall\": 0.6587301587301587, \"f1-score\": 0.6613545816733067, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.6956469456469457, \"recall\": 0.6955698622365288, \"f1-score\": 0.685877504561715, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6898491719920291, \"recall\": 0.6587301587301587, \"f1-score\": 0.6679011096116358, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}}", "eval_f1_macro": 68.5877504561715, "eval_f1_micro": 66.13545816733067, "eval_f1_weighted": 66.79011096116358, "eval_loss": 1.7174659967422485, "eval_runtime": 2.2626, "eval_samples_per_second": 55.687, "step": 2944 }, { "epoch": 185.0, "learning_rate": 2.4999999999999998e-05, "loss": 0.0053, "step": 2960 }, { "epoch": 185.0, "eval_accuracy": 65.07936507936508, "eval_average_metrics": 66.15191123433155, "eval_classification_report": "{\"0\": {\"precision\": 0.75, \"recall\": 0.6923076923076923, \"f1-score\": 0.7199999999999999, \"support\": 39.0}, \"1\": {\"precision\": 0.4166666666666667, \"recall\": 0.625, \"f1-score\": 0.5, \"support\": 16.0}, \"2\": {\"precision\": 0.21428571428571427, \"recall\": 0.21428571428571427, \"f1-score\": 0.21428571428571427, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.6923076923076923, \"recall\": 0.75, \"f1-score\": 0.7199999999999999, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 0.6666666666666666, \"recall\": 1.0, \"f1-score\": 0.8, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.656, \"recall\": 0.6507936507936508, \"f1-score\": 0.653386454183267, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.695922595922596, \"recall\": 0.6881624548291215, \"f1-score\": 0.6805603655603655, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6886664922379208, \"recall\": 0.6507936507936508, \"f1-score\": 0.6613359788359787, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6507936507936508, \"recall\": 0.6507936507936508, \"f1-score\": 0.6507936507936508, \"support\": 126.0}}", "eval_f1_macro": 68.05603655603655, "eval_f1_micro": 65.3386454183267, "eval_f1_weighted": 66.13359788359787, "eval_loss": 1.696173906326294, "eval_runtime": 2.4347, "eval_samples_per_second": 51.753, "step": 2960 }, { "epoch": 186.0, "learning_rate": 2.3333333333333332e-05, "loss": 0.0036, "step": 2976 }, { "epoch": 186.0, "eval_accuracy": 65.07936507936508, "eval_average_metrics": 66.18163782503375, "eval_classification_report": "{\"0\": {\"precision\": 0.7714285714285715, \"recall\": 0.6923076923076923, \"f1-score\": 0.7297297297297296, \"support\": 39.0}, \"1\": {\"precision\": 0.4, \"recall\": 0.625, \"f1-score\": 0.48780487804878053, \"support\": 16.0}, \"2\": {\"precision\": 0.21428571428571427, \"recall\": 0.21428571428571427, \"f1-score\": 0.21428571428571427, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.6923076923076923, \"recall\": 0.75, \"f1-score\": 0.7199999999999999, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 0.6666666666666666, \"recall\": 1.0, \"f1-score\": 0.8, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.656, \"recall\": 0.6507936507936508, \"f1-score\": 0.653386454183267, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.6964516964516965, \"recall\": 0.6881624548291215, \"f1-score\": 0.6802864330913111, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6931827431827432, \"recall\": 0.6507936507936508, \"f1-score\": 0.6627989749331212, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6507936507936508, \"recall\": 0.6507936507936508, \"f1-score\": 0.6507936507936508, \"support\": 126.0}}", "eval_f1_macro": 68.02864330913111, "eval_f1_micro": 65.3386454183267, "eval_f1_weighted": 66.27989749331212, "eval_loss": 1.6935521364212036, "eval_runtime": 2.4742, "eval_samples_per_second": 50.925, "step": 2976 }, { "epoch": 187.0, "learning_rate": 2.1666666666666664e-05, "loss": 0.0046, "step": 2992 }, { "epoch": 187.0, "eval_accuracy": 65.07936507936508, "eval_average_metrics": 66.77550755683453, "eval_classification_report": "{\"0\": {\"precision\": 0.7714285714285715, \"recall\": 0.6923076923076923, \"f1-score\": 0.7297297297297296, \"support\": 39.0}, \"1\": {\"precision\": 0.4, \"recall\": 0.625, \"f1-score\": 0.48780487804878053, \"support\": 16.0}, \"2\": {\"precision\": 0.2, \"recall\": 0.21428571428571427, \"f1-score\": 0.20689655172413796, \"support\": 14.0}, \"3\": {\"precision\": 0.9, \"recall\": 0.6, \"f1-score\": 0.7200000000000001, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.6923076923076923, \"recall\": 0.75, \"f1-score\": 0.7199999999999999, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.656, \"recall\": 0.6507936507936508, \"f1-score\": 0.653386454183267, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.731901431901432, \"recall\": 0.6881624548291215, \"f1-score\": 0.701687637251136, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.696886446886447, \"recall\": 0.6507936507936508, \"f1-score\": 0.6651525600453272, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6507936507936508, \"recall\": 0.6507936507936508, \"f1-score\": 0.6507936507936508, \"support\": 126.0}}", "eval_f1_macro": 70.1687637251136, "eval_f1_micro": 65.3386454183267, "eval_f1_weighted": 66.51525600453272, "eval_loss": 1.696948766708374, "eval_runtime": 2.4131, "eval_samples_per_second": 52.215, "step": 2992 }, { "epoch": 188.0, "learning_rate": 1.9999999999999998e-05, "loss": 0.0029, "step": 3008 }, { "epoch": 188.0, "eval_accuracy": 65.87301587301587, "eval_average_metrics": 67.19860474405668, "eval_classification_report": "{\"0\": {\"precision\": 0.7297297297297297, \"recall\": 0.6923076923076923, \"f1-score\": 0.7105263157894737, \"support\": 39.0}, \"1\": {\"precision\": 0.43478260869565216, \"recall\": 0.625, \"f1-score\": 0.5128205128205128, \"support\": 16.0}, \"2\": {\"precision\": 0.21428571428571427, \"recall\": 0.21428571428571427, \"f1-score\": 0.21428571428571427, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.8181818181818182, \"recall\": 0.75, \"f1-score\": 0.7826086956521738, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 0.6666666666666666, \"recall\": 1.0, \"f1-score\": 0.8, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6693548387096774, \"recall\": 0.6587301587301587, \"f1-score\": 0.6639999999999999, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7106793411141239, \"recall\": 0.6955698622365288, \"f1-score\": 0.6933588426151355, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6977630611170984, \"recall\": 0.6587301587301587, \"f1-score\": 0.6718551884169732, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}}", "eval_f1_macro": 69.33588426151354, "eval_f1_micro": 66.39999999999999, "eval_f1_weighted": 67.18551884169732, "eval_loss": 1.697873830795288, "eval_runtime": 2.2895, "eval_samples_per_second": 55.034, "step": 3008 }, { "epoch": 189.0, "learning_rate": 1.833333333333333e-05, "loss": 0.0026, "step": 3024 }, { "epoch": 189.0, "eval_accuracy": 67.46031746031747, "eval_average_metrics": 69.14290179833984, "eval_classification_report": "{\"0\": {\"precision\": 0.725, \"recall\": 0.7435897435897436, \"f1-score\": 0.7341772151898733, \"support\": 39.0}, \"1\": {\"precision\": 0.45454545454545453, \"recall\": 0.625, \"f1-score\": 0.5263157894736842, \"support\": 16.0}, \"2\": {\"precision\": 0.21428571428571427, \"recall\": 0.21428571428571427, \"f1-score\": 0.21428571428571427, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6854838709677419, \"recall\": 0.6746031746031746, \"f1-score\": 0.68, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7584776334776335, \"recall\": 0.7012678679345346, \"f1-score\": 0.7236609869021594, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7118918779633066, \"recall\": 0.6746031746031746, \"f1-score\": 0.6874519104282595, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}}", "eval_f1_macro": 72.36609869021594, "eval_f1_micro": 68.0, "eval_f1_weighted": 68.74519104282595, "eval_loss": 1.7059203386306763, "eval_runtime": 2.488, "eval_samples_per_second": 50.643, "step": 3024 }, { "epoch": 190.0, "learning_rate": 1.6666666666666664e-05, "loss": 0.0037, "step": 3040 }, { "epoch": 190.0, "eval_accuracy": 66.66666666666666, "eval_average_metrics": 67.9566327191327, "eval_classification_report": "{\"0\": {\"precision\": 0.7368421052631579, \"recall\": 0.717948717948718, \"f1-score\": 0.7272727272727273, \"support\": 39.0}, \"1\": {\"precision\": 0.43478260869565216, \"recall\": 0.625, \"f1-score\": 0.5128205128205128, \"support\": 16.0}, \"2\": {\"precision\": 0.21428571428571427, \"recall\": 0.21428571428571427, \"f1-score\": 0.21428571428571427, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 0.6666666666666666, \"recall\": 1.0, \"f1-score\": 0.8, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6774193548387096, \"recall\": 0.6666666666666666, \"f1-score\": 0.6719999999999999, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7205605141531916, \"recall\": 0.6984188650855317, \"f1-score\": 0.6991721241721242, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7077567184791768, \"recall\": 0.6666666666666666, \"f1-score\": 0.6804265179265179, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6666666666666666, \"recall\": 0.6666666666666666, \"f1-score\": 0.6666666666666666, \"support\": 126.0}}", "eval_f1_macro": 69.91721241721241, "eval_f1_micro": 67.19999999999999, "eval_f1_weighted": 68.04265179265178, "eval_loss": 1.7122122049331665, "eval_runtime": 2.6376, "eval_samples_per_second": 47.771, "step": 3040 }, { "epoch": 191.0, "learning_rate": 1.4999999999999999e-05, "loss": 0.004, "step": 3056 }, { "epoch": 191.0, "eval_accuracy": 65.87301587301587, "eval_average_metrics": 67.19860474405668, "eval_classification_report": "{\"0\": {\"precision\": 0.7297297297297297, \"recall\": 0.6923076923076923, \"f1-score\": 0.7105263157894737, \"support\": 39.0}, \"1\": {\"precision\": 0.43478260869565216, \"recall\": 0.625, \"f1-score\": 0.5128205128205128, \"support\": 16.0}, \"2\": {\"precision\": 0.21428571428571427, \"recall\": 0.21428571428571427, \"f1-score\": 0.21428571428571427, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.8181818181818182, \"recall\": 0.75, \"f1-score\": 0.7826086956521738, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 0.6666666666666666, \"recall\": 1.0, \"f1-score\": 0.8, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6693548387096774, \"recall\": 0.6587301587301587, \"f1-score\": 0.6639999999999999, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7106793411141239, \"recall\": 0.6955698622365288, \"f1-score\": 0.6933588426151355, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6977630611170984, \"recall\": 0.6587301587301587, \"f1-score\": 0.6718551884169732, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}}", "eval_f1_macro": 69.33588426151354, "eval_f1_micro": 66.39999999999999, "eval_f1_weighted": 67.18551884169732, "eval_loss": 1.6994680166244507, "eval_runtime": 2.3258, "eval_samples_per_second": 54.176, "step": 3056 }, { "epoch": 192.0, "learning_rate": 1.3333333333333333e-05, "loss": 0.0028, "step": 3072 }, { "epoch": 192.0, "eval_accuracy": 65.87301587301587, "eval_average_metrics": 67.19860474405668, "eval_classification_report": "{\"0\": {\"precision\": 0.7297297297297297, \"recall\": 0.6923076923076923, \"f1-score\": 0.7105263157894737, \"support\": 39.0}, \"1\": {\"precision\": 0.43478260869565216, \"recall\": 0.625, \"f1-score\": 0.5128205128205128, \"support\": 16.0}, \"2\": {\"precision\": 0.21428571428571427, \"recall\": 0.21428571428571427, \"f1-score\": 0.21428571428571427, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.8181818181818182, \"recall\": 0.75, \"f1-score\": 0.7826086956521738, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 0.6666666666666666, \"recall\": 1.0, \"f1-score\": 0.8, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6693548387096774, \"recall\": 0.6587301587301587, \"f1-score\": 0.6639999999999999, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7106793411141239, \"recall\": 0.6955698622365288, \"f1-score\": 0.6933588426151355, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.6977630611170984, \"recall\": 0.6587301587301587, \"f1-score\": 0.6718551884169732, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6587301587301587, \"recall\": 0.6587301587301587, \"f1-score\": 0.6587301587301587, \"support\": 126.0}}", "eval_f1_macro": 69.33588426151354, "eval_f1_micro": 66.39999999999999, "eval_f1_weighted": 67.18551884169732, "eval_loss": 1.6911147832870483, "eval_runtime": 2.5687, "eval_samples_per_second": 49.052, "step": 3072 }, { "epoch": 193.0, "learning_rate": 1.1666666666666666e-05, "loss": 0.0039, "step": 3088 }, { "epoch": 193.0, "eval_accuracy": 68.25396825396825, "eval_average_metrics": 69.25728963244786, "eval_classification_report": "{\"0\": {\"precision\": 0.75, \"recall\": 0.7692307692307693, \"f1-score\": 0.7594936708860761, \"support\": 39.0}, \"1\": {\"precision\": 0.47619047619047616, \"recall\": 0.625, \"f1-score\": 0.5405405405405405, \"support\": 16.0}, \"2\": {\"precision\": 0.21428571428571427, \"recall\": 0.21428571428571427, \"f1-score\": 0.21428571428571427, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 0.6666666666666666, \"recall\": 1.0, \"f1-score\": 0.8, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6935483870967742, \"recall\": 0.6825396825396826, \"f1-score\": 0.6880000000000001, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7266233766233767, \"recall\": 0.7041168707835374, \"f1-score\": 0.7058322320980549, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7170875420875421, \"recall\": 0.6825396825396826, \"f1-score\": 0.693919670660177, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}}", "eval_f1_macro": 70.5832232098055, "eval_f1_micro": 68.80000000000001, "eval_f1_weighted": 69.3919670660177, "eval_loss": 1.7030324935913086, "eval_runtime": 2.2915, "eval_samples_per_second": 54.986, "step": 3088 }, { "epoch": 194.0, "learning_rate": 9.999999999999999e-06, "loss": 0.0067, "step": 3104 }, { "epoch": 194.0, "eval_accuracy": 69.04761904761905, "eval_average_metrics": 70.08716827956789, "eval_classification_report": "{\"0\": {\"precision\": 0.75, \"recall\": 0.7692307692307693, \"f1-score\": 0.7594936708860761, \"support\": 39.0}, \"1\": {\"precision\": 0.5, \"recall\": 0.625, \"f1-score\": 0.5555555555555556, \"support\": 16.0}, \"2\": {\"precision\": 0.26666666666666666, \"recall\": 0.2857142857142857, \"f1-score\": 0.2758620689655172, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 0.6666666666666666, \"recall\": 1.0, \"f1-score\": 0.8, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.7016129032258065, \"recall\": 0.6904761904761905, \"f1-score\": 0.696, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7350889850889852, \"recall\": 0.7120533787200454, \"f1-score\": 0.714342384286368, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7259310795025081, \"recall\": 0.6904761904761905, \"f1-score\": 0.7026681564201571, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6904761904761905, \"recall\": 0.6904761904761905, \"f1-score\": 0.6904761904761905, \"support\": 126.0}}", "eval_f1_macro": 71.4342384286368, "eval_f1_micro": 69.6, "eval_f1_weighted": 70.26681564201571, "eval_loss": 1.7074908018112183, "eval_runtime": 2.5513, "eval_samples_per_second": 49.387, "step": 3104 }, { "epoch": 195.0, "learning_rate": 8.333333333333332e-06, "loss": 0.0027, "step": 3120 }, { "epoch": 195.0, "eval_accuracy": 68.25396825396825, "eval_average_metrics": 69.25728963244786, "eval_classification_report": "{\"0\": {\"precision\": 0.75, \"recall\": 0.7692307692307693, \"f1-score\": 0.7594936708860761, \"support\": 39.0}, \"1\": {\"precision\": 0.47619047619047616, \"recall\": 0.625, \"f1-score\": 0.5405405405405405, \"support\": 16.0}, \"2\": {\"precision\": 0.21428571428571427, \"recall\": 0.21428571428571427, \"f1-score\": 0.21428571428571427, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 0.6666666666666666, \"recall\": 1.0, \"f1-score\": 0.8, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6935483870967742, \"recall\": 0.6825396825396826, \"f1-score\": 0.6880000000000001, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7266233766233767, \"recall\": 0.7041168707835374, \"f1-score\": 0.7058322320980549, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7170875420875421, \"recall\": 0.6825396825396826, \"f1-score\": 0.693919670660177, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6825396825396826, \"recall\": 0.6825396825396826, \"f1-score\": 0.6825396825396826, \"support\": 126.0}}", "eval_f1_macro": 70.5832232098055, "eval_f1_micro": 68.80000000000001, "eval_f1_weighted": 69.3919670660177, "eval_loss": 1.6928298473358154, "eval_runtime": 2.5204, "eval_samples_per_second": 49.992, "step": 3120 }, { "epoch": 196.0, "learning_rate": 6.666666666666667e-06, "loss": 0.0018, "step": 3136 }, { "epoch": 196.0, "eval_accuracy": 67.46031746031747, "eval_average_metrics": 68.60696211683054, "eval_classification_report": "{\"0\": {\"precision\": 0.7435897435897436, \"recall\": 0.7435897435897436, \"f1-score\": 0.7435897435897437, \"support\": 39.0}, \"1\": {\"precision\": 0.45454545454545453, \"recall\": 0.625, \"f1-score\": 0.5263157894736842, \"support\": 16.0}, \"2\": {\"precision\": 0.21428571428571427, \"recall\": 0.21428571428571427, \"f1-score\": 0.21428571428571427, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 0.6666666666666666, \"recall\": 1.0, \"f1-score\": 0.8, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6854838709677419, \"recall\": 0.6746031746031746, \"f1-score\": 0.68, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7235061235061235, \"recall\": 0.7012678679345346, \"f1-score\": 0.7024846011688117, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7123548409262694, \"recall\": 0.6746031746031746, \"f1-score\": 0.6871907089012352, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}}", "eval_f1_macro": 70.24846011688118, "eval_f1_micro": 68.0, "eval_f1_weighted": 68.71907089012352, "eval_loss": 1.688277006149292, "eval_runtime": 2.407, "eval_samples_per_second": 52.347, "step": 3136 }, { "epoch": 197.0, "learning_rate": 4.9999999999999996e-06, "loss": 0.0026, "step": 3152 }, { "epoch": 197.0, "eval_accuracy": 67.46031746031747, "eval_average_metrics": 68.60696211683054, "eval_classification_report": "{\"0\": {\"precision\": 0.7435897435897436, \"recall\": 0.7435897435897436, \"f1-score\": 0.7435897435897437, \"support\": 39.0}, \"1\": {\"precision\": 0.45454545454545453, \"recall\": 0.625, \"f1-score\": 0.5263157894736842, \"support\": 16.0}, \"2\": {\"precision\": 0.21428571428571427, \"recall\": 0.21428571428571427, \"f1-score\": 0.21428571428571427, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 0.6666666666666666, \"recall\": 1.0, \"f1-score\": 0.8, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6854838709677419, \"recall\": 0.6746031746031746, \"f1-score\": 0.68, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7235061235061235, \"recall\": 0.7012678679345346, \"f1-score\": 0.7024846011688117, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7123548409262694, \"recall\": 0.6746031746031746, \"f1-score\": 0.6871907089012352, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}}", "eval_f1_macro": 70.24846011688118, "eval_f1_micro": 68.0, "eval_f1_weighted": 68.71907089012352, "eval_loss": 1.6889151334762573, "eval_runtime": 2.4828, "eval_samples_per_second": 50.749, "step": 3152 }, { "epoch": 198.0, "learning_rate": 3.3333333333333333e-06, "loss": 0.0034, "step": 3168 }, { "epoch": 198.0, "eval_accuracy": 67.46031746031747, "eval_average_metrics": 68.60696211683054, "eval_classification_report": "{\"0\": {\"precision\": 0.7435897435897436, \"recall\": 0.7435897435897436, \"f1-score\": 0.7435897435897437, \"support\": 39.0}, \"1\": {\"precision\": 0.45454545454545453, \"recall\": 0.625, \"f1-score\": 0.5263157894736842, \"support\": 16.0}, \"2\": {\"precision\": 0.21428571428571427, \"recall\": 0.21428571428571427, \"f1-score\": 0.21428571428571427, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 0.6666666666666666, \"recall\": 1.0, \"f1-score\": 0.8, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6854838709677419, \"recall\": 0.6746031746031746, \"f1-score\": 0.68, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7235061235061235, \"recall\": 0.7012678679345346, \"f1-score\": 0.7024846011688117, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7123548409262694, \"recall\": 0.6746031746031746, \"f1-score\": 0.6871907089012352, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}}", "eval_f1_macro": 70.24846011688118, "eval_f1_micro": 68.0, "eval_f1_weighted": 68.71907089012352, "eval_loss": 1.6891721487045288, "eval_runtime": 2.5504, "eval_samples_per_second": 49.403, "step": 3168 }, { "epoch": 199.0, "learning_rate": 1.6666666666666667e-06, "loss": 0.0045, "step": 3184 }, { "epoch": 199.0, "eval_accuracy": 67.46031746031747, "eval_average_metrics": 68.60696211683054, "eval_classification_report": "{\"0\": {\"precision\": 0.7435897435897436, \"recall\": 0.7435897435897436, \"f1-score\": 0.7435897435897437, \"support\": 39.0}, \"1\": {\"precision\": 0.45454545454545453, \"recall\": 0.625, \"f1-score\": 0.5263157894736842, \"support\": 16.0}, \"2\": {\"precision\": 0.21428571428571427, \"recall\": 0.21428571428571427, \"f1-score\": 0.21428571428571427, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 0.6666666666666666, \"recall\": 1.0, \"f1-score\": 0.8, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6854838709677419, \"recall\": 0.6746031746031746, \"f1-score\": 0.68, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7235061235061235, \"recall\": 0.7012678679345346, \"f1-score\": 0.7024846011688117, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7123548409262694, \"recall\": 0.6746031746031746, \"f1-score\": 0.6871907089012352, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}}", "eval_f1_macro": 70.24846011688118, "eval_f1_micro": 68.0, "eval_f1_weighted": 68.71907089012352, "eval_loss": 1.689268946647644, "eval_runtime": 2.6915, "eval_samples_per_second": 46.813, "step": 3184 }, { "epoch": 200.0, "learning_rate": 0.0, "loss": 0.0018, "step": 3200 }, { "epoch": 200.0, "eval_accuracy": 67.46031746031747, "eval_average_metrics": 68.60696211683054, "eval_classification_report": "{\"0\": {\"precision\": 0.7435897435897436, \"recall\": 0.7435897435897436, \"f1-score\": 0.7435897435897437, \"support\": 39.0}, \"1\": {\"precision\": 0.45454545454545453, \"recall\": 0.625, \"f1-score\": 0.5263157894736842, \"support\": 16.0}, \"2\": {\"precision\": 0.21428571428571427, \"recall\": 0.21428571428571427, \"f1-score\": 0.21428571428571427, \"support\": 14.0}, \"3\": {\"precision\": 0.9090909090909091, \"recall\": 0.6666666666666666, \"f1-score\": 0.7692307692307692, \"support\": 15.0}, \"4\": {\"precision\": 0.9090909090909091, \"recall\": 0.9090909090909091, \"f1-score\": 0.9090909090909091, \"support\": 11.0}, \"5\": {\"precision\": 0.9, \"recall\": 0.75, \"f1-score\": 0.8181818181818182, \"support\": 12.0}, \"6\": {\"precision\": 1.0, \"recall\": 0.7777777777777778, \"f1-score\": 0.8750000000000001, \"support\": 9.0}, \"7\": {\"precision\": 0.7142857142857143, \"recall\": 0.625, \"f1-score\": 0.6666666666666666, \"support\": 8.0}, \"8\": {\"precision\": 0.6666666666666666, \"recall\": 1.0, \"f1-score\": 0.8, \"support\": 2.0}, \"micro avg\": {\"precision\": 0.6854838709677419, \"recall\": 0.6746031746031746, \"f1-score\": 0.68, \"support\": 126.0}, \"macro avg\": {\"precision\": 0.7235061235061235, \"recall\": 0.7012678679345346, \"f1-score\": 0.7024846011688117, \"support\": 126.0}, \"weighted avg\": {\"precision\": 0.7123548409262694, \"recall\": 0.6746031746031746, \"f1-score\": 0.6871907089012352, \"support\": 126.0}, \"samples avg\": {\"precision\": 0.6746031746031746, \"recall\": 0.6746031746031746, \"f1-score\": 0.6746031746031746, \"support\": 126.0}}", "eval_f1_macro": 70.24846011688118, "eval_f1_micro": 68.0, "eval_f1_weighted": 68.71907089012352, "eval_loss": 1.6892096996307373, "eval_runtime": 2.488, "eval_samples_per_second": 50.643, "step": 3200 }, { "epoch": 200.0, "step": 3200, "total_flos": 2.159451856227533e+16, "train_runtime": 2647.4523, "train_samples_per_second": 1.209 } ], "max_steps": 3200, "num_train_epochs": 200, "total_flos": 2.159451856227533e+16, "trial_name": null, "trial_params": null }