{ "epoch": 200.0, "eval_accuracy": 78.44827586206897, "eval_average_metrics": 79.95936897716001, "eval_classification_report": "{\"0\": {\"precision\": 0.8333333333333334, \"recall\": 0.6756756756756757, \"f1-score\": 0.746268656716418, \"support\": 37.0}, \"1\": {\"precision\": 0.65, \"recall\": 0.8387096774193549, \"f1-score\": 0.7323943661971831, \"support\": 31.0}, \"2\": {\"precision\": 0.9090909090909091, \"recall\": 0.8333333333333334, \"f1-score\": 0.8695652173913043, \"support\": 12.0}, \"3\": {\"precision\": 1.0, \"recall\": 0.875, \"f1-score\": 0.9333333333333333, \"support\": 8.0}, \"4\": {\"precision\": 0.7, \"recall\": 0.7777777777777778, \"f1-score\": 0.7368421052631577, \"support\": 9.0}, \"5\": {\"precision\": 1.0, \"recall\": 0.8888888888888888, \"f1-score\": 0.9411764705882353, \"support\": 9.0}, \"6\": {\"precision\": 0.7777777777777778, \"recall\": 0.7777777777777778, \"f1-score\": 0.7777777777777778, \"support\": 9.0}, \"7\": {\"precision\": 1.0, \"recall\": 1.0, \"f1-score\": 1.0, \"support\": 1.0}, \"micro avg\": {\"precision\": 0.7844827586206896, \"recall\": 0.7844827586206896, \"f1-score\": 0.7844827586206896, \"support\": 116.0}, \"macro avg\": {\"precision\": 0.8587752525252526, \"recall\": 0.833395391359101, \"f1-score\": 0.8421697409084262, \"support\": 116.0}, \"weighted avg\": {\"precision\": 0.8033829676071055, \"recall\": 0.7844827586206896, \"f1-score\": 0.7872395009365947, \"support\": 116.0}, \"samples avg\": {\"precision\": 0.7844827586206896, \"recall\": 0.7844827586206896, \"f1-score\": 0.7844827586206896, \"support\": 116.0}}", "eval_f1_macro": 84.21697409084263, "eval_f1_micro": 78.44827586206897, "eval_f1_weighted": 78.72395009365947, "eval_loss": 0.6754371523857117, "eval_runtime": 1.5884, "eval_samples_per_second": 73.029 }