--- license: mit tags: - generated_from_trainer datasets: - lg-ner metrics: - precision - recall - f1 - accuracy model-index: - name: luganda-ner-v1 results: - task: name: Token Classification type: token-classification dataset: name: lg-ner type: lg-ner config: lug split: train args: lug metrics: - name: Precision type: precision value: 0.29015544041450775 - name: Recall type: recall value: 0.27722772277227725 - name: F1 type: f1 value: 0.2835443037974684 - name: Accuracy type: accuracy value: 0.7297843665768194 --- # luganda-ner-v1 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the lg-ner dataset. It achieves the following results on the evaluation set: - Loss: 1.0530 - Precision: 0.2902 - Recall: 0.2772 - F1: 0.2835 - Accuracy: 0.7298 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 25 | 1.2878 | 0.0 | 0.0 | 0.0 | 0.7271 | | No log | 2.0 | 50 | 1.2373 | 0.0 | 0.0 | 0.0 | 0.7271 | | No log | 3.0 | 75 | 1.2309 | 0.3542 | 0.1683 | 0.2282 | 0.7244 | | No log | 4.0 | 100 | 1.1505 | 0.2712 | 0.2376 | 0.2533 | 0.7183 | | No log | 5.0 | 125 | 1.1360 | 0.2579 | 0.2426 | 0.25 | 0.7170 | | No log | 6.0 | 150 | 1.0932 | 0.3108 | 0.2277 | 0.2629 | 0.7338 | | No log | 7.0 | 175 | 1.0761 | 0.2989 | 0.2574 | 0.2766 | 0.7298 | | No log | 8.0 | 200 | 1.0645 | 0.2805 | 0.3069 | 0.2931 | 0.7244 | | No log | 9.0 | 225 | 1.0577 | 0.3022 | 0.2723 | 0.2865 | 0.7325 | | No log | 10.0 | 250 | 1.0530 | 0.2902 | 0.2772 | 0.2835 | 0.7298 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2