--- license: mit tags: - generated_from_trainer datasets: - lg-ner metrics: - precision - recall - f1 - accuracy model-index: - name: luganda-ner-v1 results: - task: name: Token Classification type: token-classification dataset: name: lg-ner type: lg-ner config: lug split: test args: lug metrics: - name: Precision type: precision value: 0.7958904109589041 - name: Recall type: recall value: 0.7803895231699127 - name: F1 type: f1 value: 0.7880637504238724 - name: Accuracy type: accuracy value: 0.9450776825903877 --- # luganda-ner-v1 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the lg-ner dataset. It achieves the following results on the evaluation set: - Loss: 0.2863 - Precision: 0.7959 - Recall: 0.7804 - F1: 0.7881 - Accuracy: 0.9451 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 261 | 0.5454 | 0.4946 | 0.2471 | 0.3296 | 0.8597 | | 0.6168 | 2.0 | 522 | 0.3598 | 0.6993 | 0.5608 | 0.6224 | 0.9078 | | 0.6168 | 3.0 | 783 | 0.3842 | 0.6326 | 0.6696 | 0.6506 | 0.8941 | | 0.2599 | 4.0 | 1044 | 0.2755 | 0.7857 | 0.6870 | 0.7331 | 0.9333 | | 0.2599 | 5.0 | 1305 | 0.2642 | 0.8019 | 0.7206 | 0.7591 | 0.9351 | | 0.1498 | 6.0 | 1566 | 0.2755 | 0.7886 | 0.7589 | 0.7734 | 0.9385 | | 0.1498 | 7.0 | 1827 | 0.2601 | 0.7945 | 0.7609 | 0.7774 | 0.9458 | | 0.1023 | 8.0 | 2088 | 0.2889 | 0.7875 | 0.7717 | 0.7795 | 0.9409 | | 0.1023 | 9.0 | 2349 | 0.2819 | 0.8082 | 0.7670 | 0.7870 | 0.9460 | | 0.0716 | 10.0 | 2610 | 0.2863 | 0.7959 | 0.7804 | 0.7881 | 0.9451 | ### Framework versions - Transformers 4.27.4 - Pytorch 1.13.1+cu116 - Datasets 2.11.0 - Tokenizers 0.13.2