--- library_name: transformers tags: [] --- # Model Card for LION-Gemma-2b-sft-v1.0 The LION-series are trained using an **empirically optimized pipeline** that consists of three stages: SFT, DPO, and online preference learning (online DPO). We find simple techniques such as sequence packing, loss masking in SFT, increasing the preference dataset size in DPO, and online DPO training can significantly improve the performance of language models. Our best models (in the LION-series) **exceed the performance of the official instruct models** tuned with closed-source data and algorithms. For training datasets, code, and evaluation scripts, please refer to our [paper](https://arxiv.org/abs/2407.06542) and [codebase](https://github.com/Columbia-NLP-Lab/LionAlignment). ## Model description This model is finetuned from [`gemma-2b`](https://huggingface.co/google/gemma-2b) using SFT from the LION pipeline. - **Model type:** [`gemma-2b`](https://huggingface.co/google/gemma-2b) - **Language(s) (NLP):** Primarily English - **License:** Gemma Terms of Use - **Finetuned from model:** [`gemma-2b`](https://huggingface.co/google/gemma-2b) ## Performance | Model | Method | Size | Arena-Hard | AlpacaEval-2 | MT-Bench | OpenLLM | |-------------|--------|------|------:|------:|---------:|-------:| |[Gemma-2b](https://huggingface.co/google/gemma-2b) | - | 2B | - | - | - | 46.69 | |[Gemma-2b-it](https://huggingface.co/google/gemma-2b-it) | SFT+RLHF | 2B | 3.4 | 5.44 | 5.63 | 42.75 | |[Gemma-2b-zephyr](https://huggingface.co/wandb/gemma-2b-zephyr-dpo) | SFT+DPO | 2B | 0.9 | 2.65 | 4.13 | 46.92 | |[LLaMA-2-7b-chat](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) | SFT | 7B | 4.6 | 5.35 | 6.22 | 53.16 | |[Vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5) | SFT | 7B | 2.5 | 7.62 | 6.57 | 52.06 | |⮕ [LION-Gemma-2b-sft-v1.0 (ours)](https://huggingface.co/Columbia-NLP/LION-Gemma-2b-sft-v1.0) | SFT | 2B | 2.4 | 7.79 | 6.37 | 54.78 | |[LION-Gemma-2b-dpo-v1.0 (ours)](https://huggingface.co/Columbia-NLP/LION-Gemma-2b-dpo-v1.0) | SFT+DPO | 2B | 4.6 | 8.75 | 6.58 | 55.35 | |[LION-Gemma-2b-odpo-v1.0 (ours)](https://huggingface.co/Columbia-NLP/LION-Gemma-2b-odpo-v1.0) | SFT+DPO+ODPO | 2B | 5.0 | 9.57 | 6.75 | 55.98 | ## Intended uses To ensure reproducibility, please use the following chat templates: ```python import torch from transformers import pipeline pipe = pipeline( "text-generation", model="Columbia-NLP/LION-Gemma-2b-sft-v1.0", device_map="auto", torch_dtype=torch.bfloat16, ) messages = [ { "role": "system", "content": "", }, { "role": "user", "content": "Write a short paragraph where every sentence start with the letter A." }, ] outputs = pipe( messages, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.7, stop_sequence="<|im_end|>", ) print(outputs[0]["generated_text"][-1]["content"]) # Alice always admired the beautiful, amber leaves of the aspen trees. # Astonishingly, she noticed that the leaves would occasionally fall gently to the ground, creating a serene atmosphere. # Admiring the autumn scenery, Alice appreciated the artistry of nature. ``` to inspect the chat template/manually do generation: ```python tokenizer = AutoTokenizer.from_pretrained("Columbia-NLP/LION-Gemma-2b-sft-v1.0") prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) print(prompt) # tokenize prompt and use model.generate ``` ### Training details Please refer to our [paper](https://arxiv.org/abs/2407.06542) and [codebase](https://github.com/Columbia-NLP-Lab/LionAlignment). ## Citation Information If you find this model useful in your work, please consider citing our paper: ``` @misc{yu2024lionsempiricallyoptimizedapproach, title={LIONs: An Empirically Optimized Approach to Align Language Models}, author={Xiao Yu and Qingyang Wu and Yu Li and Zhou Yu}, year={2024}, eprint={2407.06542}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2407.06542}, } ``` ## Acknowledgements We thank the Columbia-NLP group and [articulate.ai](https://www.articulateai.com/) for providing OpenAI API credits and computational resources to conduct our experiments.