--- library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: "Throttle send frame EVR\n| | |\r\n|:---|:---|\r\n|**_F´ Version_**|commit\ \ d3fa31c |\r\n|**_Affected Component_**| ? |\r\n---\r\n## Problem Description\r\ \n\r\nA description of the problem with sufficient detail to understand the issue.\r\ \n\r\nIf there is no ground system, the interface continuously sends this pair\ \ of EVRs:\r\n\r\n```\r\n0x201db690 (TV_TLM): [ERROR] Failed to send framed data:\ \ 0\r\n0x201db690 (TV_TLM): [ERROR] Failed to send framed data: 0\r\n0x201db690\ \ (TV_TLM): [ERROR] Failed to send framed data: 0\r\n0x201db690 (TV_TLM): [ERROR]\ \ Failed to send framed data: 0\r\n0x201db690 (TV_TLM): [ERROR] Failed to send\ \ framed data: 0\r\n0x201db690 (TV_TLM): [ERROR] Failed to send framed data: 0\r\ \n0x202236f0 (TV_ReceiveTask): [WARNING] Failed to open port with status 61 and\ \ errno 0\r\n```\r\n\r\n## How to Reproduce\r\n\r\n1. Run Ref without the ground\ \ system\r\n2.\r\n3.\r\n\r\n## Expected Behavior\r\n\r\nIMHO the EVR should throttle,\ \ and perhaps the throttle is reset when the connection is make.\r\n" - text: "Color-coding interlaced Events in the API Log\n| | |\r\n|:---|:---|\r\n|**_F´\ \ Version_**| |\r\n|**_Affected Component_**| |\r\n---\r\nOne feature that wasn't\ \ completed this summer was to color-code interlaced event logs based on severity.\ \ Presently, interlacing events are implemented by making the API a consumer of\ \ the event decoder in the GDS and then filtering events. Modifying the color\ \ of these log messages can be done [here](https://github.com/nasa/fprime/blob/717bc6fab85c53680108fc961cad6338e779816f/Gds/src/fprime_gds/common/testing_fw/api.py#L1258).\r\ \n" - text: "Switch Framer and Deframer to use Mallocator Pattern\n| | |\r\n|:---|:---|\r\ \n|**_F´ Version_**| |\r\n|**_Affected Component_**| |\r\n---\r\n## Problem\ \ Description\r\n\r\nMallocator pattern is preferred over member-allocated buffers." - text: "Ninja support for fprime-tools\n| | |\r\n|:---|:---|\r\n|**_F´ Version_**|\ \ |\r\n|**_Affected Component_**| |\r\n---\r\n## Problem Description\r\n\r\n\ There are a couple places in fprime-tools where things would break if Ninja was\ \ used instead of Make. We need to fix that, as Ninja is usually much faster.\r\ \ne.g. [this](https://github.com/fprime-community/fprime-tools/blob/0a9fdf58ce4b428d407ab264f7266041808237c8/src/fprime/fbuild/cmake.py#L133)\ \ is Make-specific output, Ninja formats it differently\r\n\r\n## Expected Behavior\r\ \n\r\nSupport Ninja with fprime-tools. Add a convenient option to chose which\ \ one to use.\r\n" - text: "Build A Frame Reassembler\n| | |\r\n|:---|:---|\r\n|**_F´ Version_**| |\r\ \n|**_Affected Component_**| |\r\n---\r\n## Feature Description\r\n\r\nBuild\ \ a component that can be used to reassemble communication frames given protocol\ \ information. This will break-off this functionality from the Deframer.\r\n\r\ \nBasic requirements:\r\n1. Accept incoming Fw::Buffers of any size\r\n2. Accumulate\ \ buffers in-order\r\n3. Call frame detector helper class\r\n4. On \"NO_FRAME\"\ \ discard first byte and try again\r\n5. On \"NEED DATA\" continue to accumulate\ \ data\r\n6. On \"FRAME\" allocate buffer, copy-out frame\r\n\r\nHelper class\ \ requirements:\r\n1. Must implement `Enum detect_frame(const CircularBuffer&\ \ buffer, FwSizeType& size_output)` method\r\n2. Cannot alter circular buffer\ \ (uses peeks)\r\n3. Must set `size_output` when data is needed and when frame\ \ detected\r\n " inference: true --- # SetFit This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 384 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:--------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | bug | | | non-bug | | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("setfit_model_id") # Run inference preds = model("Switch Framer and Deframer to use Mallocator Pattern | | | |:---|:---| |**_F´ Version_**| | |**_Affected Component_**| | --- ## Problem Description Mallocator pattern is preferred over member-allocated buffers.") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:---------|:-----| | Word count | 4 | 124.1383 | 2486 | | Label | Training Sample Count | |:--------|:----------------------| | bug | 296 | | non-bug | 304 | ### Training Hyperparameters - batch_size: (16, 2) - num_epochs: (1, 1) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 20 - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0007 | 1 | 0.447 | - | | 0.0333 | 50 | 0.2333 | - | | 0.0667 | 100 | 0.083 | - | | 0.1 | 150 | 0.039 | - | | 0.1333 | 200 | 0.0354 | - | | 0.1667 | 250 | 0.0177 | - | | 0.2 | 300 | 0.0053 | - | | 0.2333 | 350 | 0.0004 | - | | 0.2667 | 400 | 0.0027 | - | | 0.3 | 450 | 0.0015 | - | | 0.3333 | 500 | 0.002 | - | | 0.3667 | 550 | 0.0003 | - | | 0.4 | 600 | 0.0001 | - | | 0.4333 | 650 | 0.0001 | - | | 0.4667 | 700 | 0.0001 | - | | 0.5 | 750 | 0.0001 | - | | 0.5333 | 800 | 0.0001 | - | | 0.5667 | 850 | 0.0001 | - | | 0.6 | 900 | 0.0001 | - | | 0.6333 | 950 | 0.0001 | - | | 0.6667 | 1000 | 0.0001 | - | | 0.7 | 1050 | 0.0 | - | | 0.7333 | 1100 | 0.0 | - | | 0.7667 | 1150 | 0.0001 | - | | 0.8 | 1200 | 0.0 | - | | 0.8333 | 1250 | 0.0001 | - | | 0.8667 | 1300 | 0.0 | - | | 0.9 | 1350 | 0.0 | - | | 0.9333 | 1400 | 0.0001 | - | | 0.9667 | 1450 | 0.0 | - | | 1.0 | 1500 | 0.0 | - | ### Framework Versions - Python: 3.11.6 - SetFit: 1.1.0 - Sentence Transformers: 3.0.1 - Transformers: 4.44.2 - PyTorch: 2.4.1+cu121 - Datasets: 2.21.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```