--- license: apache-2.0 datasets: - shibing624/CSC language: - zh metrics: - accuracy pipeline_tag: text2text-generation tags: - CSC - CGED - spelling error --- # CSC T5 - T5 for Traditional Chinese Spelling Correction This model was obtained by `instruction-tuning` the corresponding `ClueAI/PromptCLUE-base-v1-5` model on the spelling error corpus. ## Model Details ### Model Description - Language(s) (NLP): `Chinese` - Pretrained from model: `ClueAI/PromptCLUE-base-v1-5` - Pretrained by dataset: `1M UDN news corpus` - Finetuned by dataset: `shibing624/CSC` spelling error corpus ### Model Sources - Repository: [https://github.com/TedYeh/Chinese_spelling_Correction](https://github.com/TedYeh/Chinese_spelling_Correction) ### Evaluation - Chinese spelling error correction task(SIGHAN2015): - FPR: False Positive Rate | Model | Base Model | accuracy | recall | precision | F1 | FPR | |:--------------:|:---------------------------:|:---------:|:---------:|:---------:|:-----:|:-----:| | GECToR | hfl/chinese-macbert-base | 71.7 | 71.6 | 71.8 | 71.7 | 28.2 | | GECToR_large | hfl/chinese-macbert-large | 73.7 | 76.5 | 72.5 | 74.4 | 29.1 | | T5 w/ pretrain | ClueAI/PromptCLUE-base-v1-5 | 79.2 | 69.2 | 85.8 | 76.6 | 11.1 | | T5 w/o pretrain| ClueAI/PromptCLUE-base-v1-5 | 75.1 | 63.1 | 82.2 | 71.4 | 13.3 | | PTCSpell | | N/A | 79.0 | 89.4 | 83.8 | N/A | | MDCSpell | | N/A | 77.2 | 81.5 | 79.3 | N/A | ## Usage ```python from transformers import AutoTokenizer, T5ForConditionalGeneration tokenizer = AutoTokenizer.from_pretrained("CodeTed/traditional_CSC_t5") model = T5ForConditionalGeneration.from_pretrained("CodeTed/traditional_CSC_t5") input_text = '糾正句子裡的錯字: 為了降低少子化,政府可以堆動獎勵生育的政策。' input_ids = tokenizer(input_text, return_tensors="pt").input_ids outputs = model.generate(input_ids, max_length=256) edited_text = tokenizer.decode(outputs[0], skip_special_tokens=True) ``` ### Related Project [CodeTed/CGEDit](https://huggingface.co/CodeTed/CGEDit) - Chinese Grammatical Error Diagnosis by Task-Specific Instruction Tuning