--- language: fr license: mit library_name: transformers tags: - audio - audio-to-audio - speech datasets: - Cnam-LMSSC/vibravox model-index: - name: EBEN(M=4,P=4,Q=4) results: - task: name: Bandwidth Extension type: speech-enhancement dataset: name: Vibravox["forehead_accelerometer"] type: Cnam-LMSSC/vibravox args: fr metrics: - name: Test STOI, in-domain training type: stoi value: 0.8549 - name: Test Noresqa-MOS, in-domain training type: n-mos value: 4.25 ---

# Model Card - **Developed by:** [Cnam-LMSSC](https://huggingface.co/Cnam-LMSSC) - **Model type:** [EBEN](https://github.com/jhauret/vibravox/blob/main/vibravox/torch_modules/dnn/eben_generator.py) (see [publication](https://ieeexplore.ieee.org/document/10244161)) - **Language:** French - **License:** MIT - **Finetuned dataset:** `speech_clean` subset of [Cnam-LMSSC/vibravox](https://huggingface.co/datasets/Cnam-LMSSC/vibravox) - **Samplerate for usage:** 16kHz ## Overview This bandwidth extension model is trained on one specific body conduction sensor data from the [Vibravox dataset](https://huggingface.co/datasets/Cnam-LMSSC/vibravox). The model is designed to to enhance the audio quality of body-conducted captured speech, by denoising and regenerating mid and high frequencies from low frequency content only. ## Disclaimer This model has been trained for **specific non-conventional speech sensors** and is intended to be used with **in-domain data**. Please be advised that using these models outside their intended sensor data may result in suboptimal performance. ## Training procedure Detailed instructions for reproducing the experiments are available on the [jhauret/vibravox](https://github.com/jhauret/vibravox) Github repository. ## Inference script : ```python import torch, torchaudio from vibravox import EBENGenerator from datasets import load_dataset model = EBENGenerator.from_pretrained("Cnam-LMSSC/EBEN_forehead_accelerometer") test_dataset = load_dataset("Cnam-LMSSC/vibravox", "speech_clean", split="test", streaming=True) audio_48kHz = torch.Tensor(next(iter(test_dataset))["audio.forehead_accelerometer"]["array"]) audio_16kHz = torchaudio.functional.resample(audio_48kHz, orig_freq=48_000, new_freq=16_000) cut_audio_16kHz = model.cut_to_valid_length(audio_16kHz) enhanced_audio_16kHz = model(cut_audio_16kHz) ``` ## Link to other BWE models trained on other body conducted sensors : An entry point to all **audio bandwidth extension** (BWE) models trained on different sensor data from the trained on different sensor data from the [Vibravox dataset](https://huggingface.co/datasets/Cnam-LMSSC/vibravox) is available at [https://huggingface.co/Cnam-LMSSC/vibravox_EBEN_bwe_models](https://huggingface.co/Cnam-LMSSC/vibravox_EBEN_bwe_models).