--- license: mit base_model: camembert-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: RoBERTa-ner results: [] --- # RoBERTa-ner This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1634 - Precision: 0.8634 - Recall: 0.8734 - F1: 0.8684 - Accuracy: 0.9791 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 294 | 0.2447 | 0.8248 | 0.8624 | 0.8432 | 0.9777 | | 0.3867 | 2.0 | 588 | 0.1717 | 0.8558 | 0.8727 | 0.8642 | 0.9820 | | 0.3867 | 3.0 | 882 | 0.1562 | 0.8605 | 0.8805 | 0.8704 | 0.9827 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.2 - Datasets 2.19.0 - Tokenizers 0.19.1