--- language: en license: mit tags: - fundus - diabetic retinopathy - classification datasets: - APTOS - EYEPACS - IDRID - DDR library: timm model-index: - name: swinv2_large_window12to16_192to256.ms_in22k_ft_in1k results: - task: type: image-classification dataset: name: EYEPACS type: EYEPACS metrics: - type: kappa value: 0.7938311696052551 name: Quadratic Kappa - task: type: image-classification dataset: name: IDRID type: IDRID metrics: - type: kappa value: 0.768999457359314 name: Quadratic Kappa - task: type: image-classification dataset: name: DDR type: DDR metrics: - type: kappa value: 0.7947348952293396 name: Quadratic Kappa --- # Fundus DR Grading [![Rye](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/rye/main/artwork/badge.json)](https://rye-up.com) [![PyTorch](https://img.shields.io/badge/PyTorch-ee4c2c?logo=pytorch&logoColor=white)](https://pytorch.org/docs/stable/index.html) [![Lightning](https://img.shields.io/badge/Lightning-792ee5?logo=lightning&logoColor=white)](https://lightning.ai/docs/pytorch/stable/) ## Description This project aims to evaluate the performance of different models for the classification of diabetic retinopathy (DR) in fundus images. The reported perfomance metrics are not always consistent in the literature. Our goal is to provide a fair comparison between different models using the same datasets and evaluation protocol.