--- language: en license: mit tags: - fundus - diabetic retinopathy - classification datasets: - APTOS - EYEPACS - IDRID - DDR library: timm model-index: - name: efficientnet_b2 results: - task: type: image-classification dataset: name: EYEPACS type: EYEPACS metrics: - type: kappa value: 0.7577868700027466 name: Quadratic Kappa - task: type: image-classification dataset: name: IDRID type: IDRID metrics: - type: kappa value: 0.7042314410209656 name: Quadratic Kappa - task: type: image-classification dataset: name: DDR type: DDR metrics: - type: kappa value: 0.7354801893234253 name: Quadratic Kappa --- # Fundus DR Grading [![Rye](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/rye/main/artwork/badge.json)](https://rye-up.com) [![PyTorch](https://img.shields.io/badge/PyTorch-ee4c2c?logo=pytorch&logoColor=white)](https://pytorch.org/docs/stable/index.html) [![Lightning](https://img.shields.io/badge/Lightning-792ee5?logo=lightning&logoColor=white)](https://lightning.ai/docs/pytorch/stable/) ## Description This project aims to evaluate the performance of different models for the classification of diabetic retinopathy (DR) in fundus images. The reported perfomance metrics are not always consistent in the literature. Our goal is to provide a fair comparison between different models using the same datasets and evaluation protocol.