File size: 6,452 Bytes
4a1207e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import os
import glob
import requests
import json
import cv2
import numpy as np
import sys
import torch
from PIL import Image
from pprint import pprint
import base64
from io import BytesIO
import torchvision.transforms.functional as F
from torchvision.io import read_video, read_image, ImageReadMode
from torchvision.models.optical_flow import Raft_Large_Weights
from torchvision.models.optical_flow import raft_large
from torchvision.io import read_video, read_image, ImageReadMode
from torchvision.utils import flow_to_image
import cv2
from torchvision.io import write_jpeg
import pickle
device = "cuda" if torch.cuda.is_available() else "cpu"
model = raft_large(weights=Raft_Large_Weights.DEFAULT, progress=False).to(device)
model = model.eval()
# Replace with the actual path to your image file and folder
x_path = "./init.png"
y_folder = "./Input_Images"
output_folder = "output"
os.makedirs(output_folder, exist_ok=True)
def get_image_paths(folder):
image_extensions = ("*.jpg", "*.jpeg", "*.png", "*.bmp")
files = []
for ext in image_extensions:
files.extend(glob.glob(os.path.join(folder, ext)))
return sorted(files)
y_paths = get_image_paths(y_folder)
def send_request(last_image_path, optical_flow_path,current_image_path):
url = "http://localhost:7860/sdapi/v1/img2img"
with open(last_image_path, "rb") as b:
last_image_encoded = base64.b64encode(b.read()).decode("utf-8")
# Load and process the last image
last_image = cv2.imread(last_image_path)
last_image = cv2.cvtColor(last_image, cv2.COLOR_BGR2RGB)
last_image = cv2.resize(last_image, (512, 512))
# Load and process the optical flow image
flow_image = cv2.imread(optical_flow_path)
flow_image = cv2.cvtColor(flow_image, cv2.COLOR_BGR2RGB)
# Load and process the current image
with open(current_image_path, "rb") as b:
current_image = base64.b64encode(b.read()).decode("utf-8")
# Concatenating the three images to make a 6-channel image
six_channel_image = np.dstack((last_image, flow_image))
# Serializing the 6-channel image
serialized_image = pickle.dumps(six_channel_image)
# Encoding the serialized image
encoded_image = base64.b64encode(serialized_image).decode('utf-8')
data = {
"init_images": [current_image],
"inpainting_fill": 0,
"inpaint_full_res": True,
"inpaint_full_res_padding": 1,
"inpainting_mask_invert": 1,
"resize_mode": 0,
"denoising_strength": 0.4,
"prompt": "1girl, woman",
"negative_prompt": "",
"alwayson_scripts": {
"ControlNet":{
"args": [
{
"input_image": current_image,
"module": "hed",
"model": "control_hed-fp16 [13fee50b]",
"weight": 0.7,
"guidance": 1,
},
{
"input_image": encoded_image,
"model": "temporalnetversion2 [b146ac48]",
"module": "none",
"weight": 0.6,
"guidance": 1,
},
{
"input_image": current_image,
"model": "control_v11p_sd15_openpose [cab727d4]",
"module": "openpose_full",
"weight": 0.7,
"guidance":1,
}
]
}
},
"seed": 4123457655,
"subseed": -1,
"subseed_strength": -1,
"sampler_index": "Euler a",
"batch_size": 1,
"n_iter": 1,
"steps": 20,
"cfg_scale": 6,
"width": 512,
"height": 512,
"restore_faces": True,
"include_init_images": True,
"override_settings": {},
"override_settings_restore_afterwards": True
}
response = requests.post(url, json=data)
if response.status_code == 200:
return response.content
else:
try:
error_data = response.json()
print("Error:")
print(str(error_data))
except json.JSONDecodeError:
print(f"Error: Unable to parse JSON error data.")
return None
def infer(frameA, frameB):
input_frame_1 = read_image(str(frameA), ImageReadMode.RGB)
input_frame_2 = read_image(str(frameB), ImageReadMode.RGB)
#img1_batch = torch.stack([frames[0]])
#img2_batch = torch.stack([frames[1]])
img1_batch = torch.stack([input_frame_1])
img2_batch = torch.stack([input_frame_2])
weights = Raft_Large_Weights.DEFAULT
transforms = weights.transforms()
def preprocess(img1_batch, img2_batch):
img1_batch = F.resize(img1_batch, size=[512, 512])
img2_batch = F.resize(img2_batch, size=[512, 512])
return transforms(img1_batch, img2_batch)
img1_batch, img2_batch = preprocess(img1_batch, img2_batch)
list_of_flows = model(img1_batch.to(device), img2_batch.to(device))
predicted_flows = list_of_flows[-1]
#flow_imgs = flow_to_image(predicted_flows)
#print(flow_imgs)
predicted_flow = list_of_flows[-1][0]
opitcal_flow_path = os.path.join(output_folder, f"flow_{i}.png")
flow_img = flow_to_image(predicted_flow).to("cpu")
write_jpeg(flow_img,opitcal_flow_path)
return opitcal_flow_path
output_images = []
output_paths = []
# Initialize with the first image path
result = x_path
output_image_path = os.path.join(output_folder, f"output_image_0.png")
#with open(output_image_path, "wb") as f:
# f.write(result)
last_image_path = x_path
for i in range(1, len(y_paths)):
# Use the last image path and optical flow map to generate the next input
optical_flow = infer(y_paths[i - 1], y_paths[i])
# Modify your send_request to use the last_image_path
result = send_request(last_image_path, optical_flow, y_paths[i])
data = json.loads(result)
encoded_image = data["images"][0]
output_image_path = os.path.join(output_folder, f"output_image_{i}.png")
last_image_path = output_image_path
with open(output_image_path, "wb") as f:
f.write(base64.b64decode(encoded_image))
print(f"Written data for frame {i}:")
|