--- license: apache-2.0 base_model: distilbert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner-football_final results: [] --- # bert-finetuned-ner-football_final This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1473 - Precision: 0.8997 - Recall: 0.9311 - F1: 0.9151 - Accuracy: 0.9721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 199 | 0.1382 | 0.8850 | 0.9270 | 0.9055 | 0.9701 | | No log | 2.0 | 398 | 0.1359 | 0.9080 | 0.9250 | 0.9164 | 0.9706 | | 0.0325 | 3.0 | 597 | 0.1473 | 0.8997 | 0.9311 | 0.9151 | 0.9721 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.2.2 - Datasets 2.19.1 - Tokenizers 0.19.1