import numpy as np import glob import ants import nibabel as nib import os import argparse import sys from crop import crop, cropV2, save_fileV2 from pathlib import Path def parse_command_line(): parser = argparse.ArgumentParser( description='pipeline for data preprocessing') parser.add_argument('-rs', metavar='shape after resizing', type=int, nargs='+', help='shape after resizing the image and segmentation. Expected to be 2^N') parser.add_argument('-fp', action='store_true', help='check if need to flip the data') parser.add_argument('-ti', metavar='task id and name', type=str, help='task name and id') parser.add_argument('-op', metavar='output path for both registration & crop step', type=str, help="should be same name in the registration, crop and final prediction steps") argv = parser.parse_args() return argv def path_to_id(path): ids = [] for i in glob.glob(path + '/*nii.gz'): id = os.path.basename(i).split('.')[0] ids.append(id) return ids def pad(raw_image, bound_x, bound_y, bound_z, resize, seg=False): diff_x = resize[0] - (bound_x[1]-bound_x[0]) diff_y = resize[1] - (bound_y[1]-bound_y[0]) diff_z = resize[2] - (bound_z[1]-bound_z[0]) if diff_x < 0 or diff_y < 0 or diff_z < 0: sys.exit( 'the dimension of ROI is larger than the resizing dimension, please choose a different padding dimension') left_y, right_y = split(diff_y) left_z, right_z = split(diff_z) left_x, right_x = split(diff_x) new_bound_x_left = bound_x[0] - left_x new_bound_x_right = bound_x[1] + right_x new_bound_y_left = bound_y[0] - left_y new_bound_y_right = bound_y[1] + right_y new_bound_z_left = bound_z[0] - left_z new_bound_z_right = bound_z[1] + right_z # check if x_dim out of bounds if new_bound_x_left < 0: new_bound_x_left = 0 new_bound_x_right = bound_x[1] + diff_x - bound_x[0] elif new_bound_x_right > raw_image.shape[0]: new_bound_x_right = raw_image.shape[0] new_bound_x_left = bound_x[0] - \ (diff_x - (raw_image.shape[0] - bound_x[1])) # check if y_dim out of bounds if new_bound_y_left < 0: new_bound_y_left = 0 new_bound_y_right = bound_y[1] + diff_y - bound_y[0] elif new_bound_y_right > raw_image.shape[1]: new_bound_y_right = raw_image.shape[1] new_bound_y_left = bound_y[0] - \ (diff_y - (raw_image.shape[1] - bound_y[1])) # check if z_dim out of bounds if new_bound_z_left < 0: new_bound_z_left = 0 new_bound_z_right = bound_z[1] + diff_z - bound_z[0] elif new_bound_z_right > raw_image.shape[2]: new_bound_z_right = raw_image.shape[2] new_bound_z_left = bound_z[0] - \ (diff_z - (raw_image.shape[2] - bound_z[1])) assert new_bound_x_right - new_bound_x_left == resize[0] assert new_bound_y_right - new_bound_y_left == resize[1] assert new_bound_z_right - new_bound_z_left == resize[2] if not seg: return raw_image[new_bound_x_left:new_bound_x_right, new_bound_y_left:new_bound_y_right, new_bound_z_left:new_bound_z_right] else: new_seg = np.zeros_like(raw_image) new_seg[bound_x[0]:bound_x[1], bound_y[0]:bound_y[1], bound_z[0]:bound_z[1]] = raw_image[bound_x[0]:bound_x[1], bound_y[0]:bound_y[1], bound_z[0]:bound_z[1]] return new_seg[new_bound_x_left:new_bound_x_right, new_bound_y_left:new_bound_y_right, new_bound_z_left:new_bound_z_right] def split(distance): if distance == 0: return 0, 0 half_dist = int(distance / 2) left = int(half_dist * 0.8) right = distance - left return left, right def crop_and_flip(nib_img, nib_seg, ants_img, ants_seg, resize): img = nib_img.get_fdata() seg = nib_seg.get_fdata() gem = ants.label_geometry_measures(ants_seg, ants_img) low_x = min(list(gem.loc[:, 'BoundingBoxLower_x'])) upp_x = max(list(gem.loc[:, 'BoundingBoxUpper_x'])) low_y = min(list(gem.loc[:, 'BoundingBoxLower_y'])) upp_y = max(list(gem.loc[:, 'BoundingBoxUpper_y'])) low_z = min(list(gem.loc[:, 'BoundingBoxLower_z'])) upp_z = max(list(gem.loc[:, 'BoundingBoxUpper_z'])) img = Zscore_normalization(img) #img = MinMax_normalization(img) # Compute mid point mid_x = int((low_x + upp_x) / 2) tuple_x_left = tuple([low_x, mid_x]) tuple_x_right = tuple([mid_x, upp_x]) tuple_y = tuple([low_y, upp_y]) tuple_z = tuple([low_z, upp_z]) left_img = pad(img, tuple_x_left, tuple_y, tuple_z, resize, seg=False) left_seg = pad(seg, tuple_x_left, tuple_y, tuple_z, resize, seg=True) right_img = pad(img, tuple_x_right, tuple_y, tuple_z, resize, seg=False) right_seg = pad(seg, tuple_x_right, tuple_y, tuple_z, resize, seg=True) flipped_right_img = np.flip(right_img, axis=0) flipped_right_seg = np.flip(right_seg, axis=0) return left_img, left_seg, flipped_right_img, flipped_right_seg def crop_and_flip_V2(nib_img, ants_img, resize, geo_info): img = nib_img.get_fdata() tuple_x = geo_info[0] tuple_y = geo_info[1] tuple_z = geo_info[2] low_x = tuple_x[0] upp_x = tuple_x[1] img = Zscore_normalization(img) #img = MinMax_normalization(img) # Compute mid point mid_x = int((low_x + upp_x) / 2) tuple_x_left = tuple([low_x, mid_x]) tuple_x_right = tuple([mid_x, upp_x]) left_img = pad(img, tuple_x_left, tuple_y, tuple_z, resize, seg=False) right_img = pad(img, tuple_x_right, tuple_y, tuple_z, resize, seg=False) flipped_right_img = np.flip(right_img, axis=0) return left_img, flipped_right_img def MinMax_normalization(scan): lb = np.amin(scan) ub = np.amax(scan) scan = (scan - lb) / (ub - lb) return scan def Zscore_normalization(scan): mean = np.mean(scan) std = np.std(scan) lb = np.percentile(scan, 0.05) ub = np.percentile(scan, 99.5) scan = np.clip(scan, lb, ub) scan = (scan - mean) / std return scan def load_data(img_path, seg_path): nib_seg = nib.load(seg_path) nib_img = nib.load(img_path) ants_seg = ants.image_read(seg_path) ants_img = ants.image_read(img_path) return nib_img, nib_seg, ants_img, ants_seg def crop_flip_save_file(left_img, left_seg, flipped_right_img, flipped_right_seg, nib_img, nib_seg, output_img, output_seg, scan_id): left_img_nii = nib.Nifti1Image( left_img, affine=nib_img.affine, header=nib_img.header) left_seg_nii = nib.Nifti1Image( left_seg, affine=nib_seg.affine, header=nib_seg.header) right_img_nii = nib.Nifti1Image( flipped_right_img, affine=nib_img.affine, header=nib_img.header) right_seg_nii = nib.Nifti1Image( flipped_right_seg, affine=nib_seg.affine, header=nib_seg.header) left_img_nii.to_filename(os.path.join( output_img, 'right_' + scan_id + '.nii.gz')) left_seg_nii.to_filename(os.path.join( output_seg, 'right_' + scan_id + '.nii.gz')) right_img_nii.to_filename(os.path.join( output_img, 'left_' + scan_id + '.nii.gz')) right_seg_nii.to_filename(os.path.join( output_seg, 'left_' + scan_id + '.nii.gz')) def get_geometry_info(seg_path, img_path): template = (glob.glob(seg_path + '/*nii.gz'))[0] template_id = os.path.basename(template).split('.')[0] img = ants.image_read(os.path.join(img_path, template_id + '.nii.gz')) seg = ants.image_read(template) gem = ants.label_geometry_measures(seg, img) low_x = min(list(gem.loc[:, 'BoundingBoxLower_x'])) upp_x = max(list(gem.loc[:, 'BoundingBoxUpper_x'])) low_y = min(list(gem.loc[:, 'BoundingBoxLower_y'])) upp_y = max(list(gem.loc[:, 'BoundingBoxUpper_y'])) low_z = min(list(gem.loc[:, 'BoundingBoxLower_z'])) upp_z = max(list(gem.loc[:, 'BoundingBoxUpper_z'])) tuple_x = tuple([low_x, upp_x]) tuple_y = tuple([low_y, upp_y]) tuple_z = tuple([low_z, upp_z]) return [tuple_x, tuple_y, tuple_z] def crop_flip_save_file_V2(left_img, flipped_right_img, nib_img, output_img, scan_id): left_img_nii = nib.Nifti1Image( left_img, affine=nib_img.affine, header=nib_img.header) right_img_nii = nib.Nifti1Image( flipped_right_img, affine=nib_img.affine, header=nib_img.header) left_img_nii.to_filename(os.path.join( output_img, 'right_' + scan_id + '.nii.gz')) right_img_nii.to_filename(os.path.join( output_img, 'left_' + scan_id + '.nii.gz')) def crop_save_file(left_img, left_seg, nib_img, nib_seg, output_img, output_seg, scan_id): left_img_nii = nib.Nifti1Image( left_img, affine=nib_img.affine, header=nib_img.header) left_seg_nii = nib.Nifti1Image( left_seg, affine=nib_seg.affine, header=nib_seg.header) left_img_nii.to_filename(os.path.join( output_img, scan_id + '.nii.gz')) left_seg_nii.to_filename(os.path.join( output_seg, scan_id + '.nii.gz')) def main(): ROOT_DIR = str(Path(os.getcwd()).parent.parent.absolute()) args = parse_command_line() resize_shape = args.rs flipped = args.fp deepatlas_path = ROOT_DIR task_id = args.ti base_path = os.path.join(deepatlas_path, 'deepatlas_raw_data_base', task_id, 'customize_test_data', args.op) image_path = os.path.join(base_path, 'images') seg_path = os.path.join(base_path, 'labels') task_path = os.path.join(deepatlas_path, 'deepatlas_preprocessed', task_id) output_data_path = os.path.join(task_path, 'customize_test_data') out_data_path = os.path.join(output_data_path, args.op) output_img = os.path.join(out_data_path, 'images') output_seg = os.path.join(out_data_path, 'labels') label_list = path_to_id(seg_path) geo_info = get_geometry_info(seg_path, image_path) try: os.mkdir(output_data_path) except: print(f'{output_data_path} is already existed') try: os.mkdir(out_data_path) except: print(f'{out_data_path} is already existed') try: os.mkdir(output_img) except: print(f'{output_img} is already existed') try: os.mkdir(output_seg) except: print(f'{output_seg} is already existed') for i in sorted(glob.glob(image_path + '/*nii.gz')): id = os.path.basename(i).split('.')[0] if id in label_list: label_path = os.path.join(seg_path, id + '.nii.gz') nib_img, nib_seg, ants_img, ants_seg = load_data(i, label_path) if flipped: left_img, left_seg, flipped_right_img, flipped_right_seg = crop_and_flip( nib_img, nib_seg, ants_img, ants_seg, resize_shape) print( 'Scan ID: ' + id + f', img & seg before cropping: {nib_img.get_fdata().shape}, after cropping, flipping and padding: {left_img.shape} and {flipped_right_img.shape}') crop_flip_save_file(left_img, left_seg, flipped_right_img, flipped_right_seg, nib_img, nib_seg, output_img, output_seg, id) else: left_img, left_seg = crop( nib_img, nib_seg, ants_img, ants_seg, resize_shape) print( 'Scan ID: ' + id + f', img & seg before cropping: {nib_img.get_fdata().shape}, after cropping and padding the image and seg: {left_img.shape}') crop_save_file(left_img, left_seg, nib_img, nib_seg, output_img, output_seg, id) else: nib_img = nib.load(i) ant_img = ants.image_read(i) if flipped: left_img, flipped_right_img = crop_and_flip_V2(nib_img, ant_img, resize_shape, geo_info) print( 'Scan ID: ' + id + f', img before cropping: {nib_img.get_fdata().shape}, after cropping, flipping and padding: {left_img.shape} and {flipped_right_img.shape}') crop_flip_save_file_V2(left_img, flipped_right_img, nib_img, output_img, id) else: outImg = cropV2(nib_img, ant_img, resize_shape, geo_info) print( 'Scan ID: ' + id + f', img before cropping: {nib_img.get_fdata().shape}, after cropping and padding the image: {outImg.shape}') save_fileV2(outImg, nib_img, output_img, id) if __name__ == '__main__': main()