---
base_model: openai/whisper-tiny
datasets:
- fleurs
language:
- th
library_name: transformers
license: apache-2.0
metrics:
- wer
tags:
- hf-asr-leaderboard
- generated_from_trainer
model-index:
- name: Whisper Tiny Thai Punctuation 5k - Chee Li
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: Google Fleurs
      type: fleurs
      config: th_th
      split: None
      args: 'config: th split: test'
    metrics:
    - type: wer
      value: 123.48610781287105
      name: Wer
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Tiny Thai Punctuation 5k - Chee Li

This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Google Fleurs dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7730
- Wer: 123.4861

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Wer      |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| 0.2888        | 5.2356  | 1000 | 0.6095          | 131.7739 |
| 0.0918        | 10.4712 | 2000 | 0.6100          | 119.5203 |
| 0.0229        | 15.7068 | 3000 | 0.6838          | 122.1325 |
| 0.0069        | 20.9424 | 4000 | 0.7521          | 121.0639 |
| 0.0049        | 26.1780 | 5000 | 0.7730          | 123.4861 |


### Framework versions

- Transformers 4.46.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.20.3