--- base_model: openai/whisper-tiny datasets: - fleurs language: - th library_name: transformers license: apache-2.0 metrics: - wer tags: - hf-asr-leaderboard - generated_from_trainer model-index: - name: Whisper Tiny Thai Punctuation 5k - Chee Li results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Google Fleurs type: fleurs config: th_th split: None args: 'config: th split: test' metrics: - type: wer value: 123.48610781287105 name: Wer --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Tiny Thai Punctuation 5k - Chee Li This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Google Fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.7730 - Wer: 123.4861 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 0.2888 | 5.2356 | 1000 | 0.6095 | 131.7739 | | 0.0918 | 10.4712 | 2000 | 0.6100 | 119.5203 | | 0.0229 | 15.7068 | 3000 | 0.6838 | 122.1325 | | 0.0069 | 20.9424 | 4000 | 0.7521 | 121.0639 | | 0.0049 | 26.1780 | 5000 | 0.7730 | 123.4861 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.20.3