--- language: - he license: apache-2.0 base_model: openai/whisper-large-v3 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - google/fleurs metrics: - wer model-index: - name: Whisper Large V3 he ft - Chee Li results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Google Fleurs type: google/fleurs config: he_il split: None args: 'config: he split: test' metrics: - name: Wer type: wer value: 89.96973946416709 --- # Whisper Large V3 he ft - Chee Li This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the Google Fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.5137 - Wer: 89.9697 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.1909 | 4.4643 | 1000 | 0.3820 | 74.8247 | | 0.0604 | 8.9286 | 2000 | 0.4345 | 94.2210 | | 0.0269 | 13.3929 | 3000 | 0.4905 | 96.9297 | | 0.0119 | 17.8571 | 4000 | 0.5137 | 89.9697 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1