# Copyright (c) 2023, Albert Gu, Tri Dao. import math from functools import partial import json import os from collections import namedtuple import torch import torch.nn as nn from dataclasses import dataclass, field from mamba_ssm.modules.mamba_simple import Mamba, Block from mamba_ssm.utils.generation import GenerationMixin from mamba_ssm.utils.hf import load_config_hf, load_state_dict_hf try: from mamba_ssm.ops.triton.layernorm import RMSNorm, layer_norm_fn, rms_norm_fn except ImportError: RMSNorm, layer_norm_fn, rms_norm_fn = None, None, None _MODEL_REGISTRY = {} def register_model(name): def register_model_cls(cls): if name in _MODEL_REGISTRY: raise ValueError(f"Duplicate model name {name}") if not issubclass(cls, nn.Module): raise ValueError(f"Model {cls.__name__} does not inherit from nn.Module") _MODEL_REGISTRY[name] = cls return cls return register_model_cls @dataclass class MambaConfig: model_type = "mamba" d_model: int = 2560 n_layer: int = 64 vocab_size: int = 50277 ssm_cfg: dict = field(default_factory=dict) rms_norm: bool = True residual_in_fp32: bool = True fused_add_norm: bool = True pad_vocab_size_multiple: int = 8 def create_block( d_model, ssm_cfg=None, norm_epsilon=1e-5, rms_norm=False, residual_in_fp32=False, fused_add_norm=False, layer_idx=None, device=None, dtype=None, ): if ssm_cfg is None: ssm_cfg = {} factory_kwargs = {"device": device, "dtype": dtype} mixer_cls = partial(Mamba, layer_idx=layer_idx, **ssm_cfg, **factory_kwargs) norm_cls = partial( nn.LayerNorm if not rms_norm else RMSNorm, eps=norm_epsilon, **factory_kwargs ) block = Block( d_model, mixer_cls, norm_cls=norm_cls, fused_add_norm=fused_add_norm, residual_in_fp32=residual_in_fp32, ) block.layer_idx = layer_idx return block # https://github.com/huggingface/transformers/blob/c28d04e9e252a1a099944e325685f14d242ecdcd/src/transformers/models/gpt2/modeling_gpt2.py#L454 def _init_weights( module, n_layer, initializer_range=0.02, # Now only used for embedding layer. rescale_prenorm_residual=True, n_residuals_per_layer=1, # Change to 2 if we have MLP ): if isinstance(module, nn.Linear): if module.bias is not None: if not getattr(module.bias, "_no_reinit", False): nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): nn.init.normal_(module.weight, std=initializer_range) if rescale_prenorm_residual: # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme: # > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale # > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers. # > -- GPT-2 :: https://openai.com/blog/better-language-models/ # # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py for name, p in module.named_parameters(): if name in ["out_proj.weight", "fc2.weight"]: # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block # Following Pytorch init, except scale by 1/sqrt(2 * n_layer) # We need to reinit p since this code could be called multiple times # Having just p *= scale would repeatedly scale it down nn.init.kaiming_uniform_(p, a=math.sqrt(5)) with torch.no_grad(): p /= math.sqrt(n_residuals_per_layer * n_layer) @register_model("mamba") class MixerModel(nn.Module): def __init__( self, d_model: int, n_layer: int, vocab_size: int, ssm_cfg=None, norm_epsilon: float = 1e-5, rms_norm: bool = False, initializer_cfg=None, fused_add_norm=False, residual_in_fp32=False, device=None, dtype=None, ) -> None: factory_kwargs = {"device": device, "dtype": dtype} super().__init__() self.residual_in_fp32 = residual_in_fp32 self.embedding = nn.Embedding(vocab_size, d_model, **factory_kwargs) # We change the order of residual and layer norm: # Instead of LN -> Attn / MLP -> Add, we do: # Add -> LN -> Attn / MLP / Mixer, returning both the residual branch (output of Add) and # the main branch (output of MLP / Mixer). The model definition is unchanged. # This is for performance reason: we can fuse add + layer_norm. self.fused_add_norm = fused_add_norm if self.fused_add_norm: if layer_norm_fn is None or rms_norm_fn is None: raise ImportError("Failed to import Triton LayerNorm / RMSNorm kernels") self.layers = nn.ModuleList( [ create_block( d_model, ssm_cfg=ssm_cfg, norm_epsilon=norm_epsilon, rms_norm=rms_norm, residual_in_fp32=residual_in_fp32, fused_add_norm=fused_add_norm, layer_idx=i, **factory_kwargs, ) for i in range(n_layer) ] ) self.norm_f = (nn.LayerNorm if not rms_norm else RMSNorm)( d_model, eps=norm_epsilon, **factory_kwargs ) self.apply( partial( _init_weights, n_layer=n_layer, **(initializer_cfg if initializer_cfg is not None else {}), ) ) def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs): return { i: layer.allocate_inference_cache( batch_size, max_seqlen, dtype=dtype, **kwargs ) for i, layer in enumerate(self.layers) } def forward(self, input_ids, embedding=None, inference_params=None): hidden_states = self.embedding(input_ids) if embedding is None else embedding residual = None for layer in self.layers: hidden_states, residual = layer( hidden_states, residual, inference_params=inference_params ) if not self.fused_add_norm: residual = ( (hidden_states + residual) if residual is not None else hidden_states ) hidden_states = self.norm_f(residual.to(dtype=self.norm_f.weight.dtype)) else: # Set prenorm=False here since we don't need the residual fused_add_norm_fn = ( rms_norm_fn if isinstance(self.norm_f, RMSNorm) else layer_norm_fn ) hidden_states = fused_add_norm_fn( hidden_states, self.norm_f.weight, self.norm_f.bias, eps=self.norm_f.eps, residual=residual, prenorm=False, residual_in_fp32=self.residual_in_fp32, ) return hidden_states @register_model("bidirectional_mamba") class BiDirectionMixerModel(nn.Module): def __init__( self, d_model: int, n_layer: int, vocab_size: int, ssm_cfg=None, norm_epsilon: float = 1e-5, rms_norm: bool = False, initializer_cfg=None, fused_add_norm=False, residual_in_fp32=False, device=None, dtype=None, ) -> None: factory_kwargs = {"device": device, "dtype": dtype} super().__init__() self.residual_in_fp32 = residual_in_fp32 self.embedding = nn.Embedding(vocab_size, d_model, **factory_kwargs) self.gate = nn.Linear(2*d_model, 1,) # We change the order of residual and layer norm: # Instead of LN -> Attn / MLP -> Add, we do: # Add -> LN -> Attn / MLP / Mixer, returning both the residual branch (output of Add) and # the main branch (output of MLP / Mixer). The model definition is unchanged. # This is for performance reason: we can fuse add + layer_norm. self.fused_add_norm = fused_add_norm if self.fused_add_norm: if layer_norm_fn is None or rms_norm_fn is None: raise ImportError("Failed to import Triton LayerNorm / RMSNorm kernels") self.forward_layers = nn.ModuleList( [ create_block( d_model, ssm_cfg=ssm_cfg, norm_epsilon=norm_epsilon, rms_norm=rms_norm, residual_in_fp32=residual_in_fp32, fused_add_norm=fused_add_norm, layer_idx=i, **factory_kwargs, ) for i in range(n_layer) ] ) self.backward_layers = nn.ModuleList( [ create_block( d_model, ssm_cfg=ssm_cfg, norm_epsilon=norm_epsilon, rms_norm=rms_norm, residual_in_fp32=residual_in_fp32, fused_add_norm=fused_add_norm, layer_idx=i, **factory_kwargs, ) for i in range(n_layer) ] ) self.hidden_fc = nn.ModuleList( [nn.Linear(2 * d_model, d_model) for i in range(n_layer)] ) self.norm_f = (nn.LayerNorm if not rms_norm else RMSNorm)( d_model, eps=norm_epsilon, **factory_kwargs ) self.apply( partial( _init_weights, n_layer=n_layer, **(initializer_cfg if initializer_cfg is not None else {}), ) ) def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs): return { i: layer.allocate_inference_cache( batch_size, max_seqlen, dtype=dtype, **kwargs ) for i, layer in enumerate(self.layers) } def forward(self, input_ids, embedding=None, inference_params=None): hidden_states = self.embedding(input_ids) embedding = torch.zeros_like(hidden_states) if embedding is None else embedding gate = self.gate(torch.cat([hidden_states, embedding], dim=-1)).sigmoid() hidden_states = hidden_states * gate + embedding * (1 - gate) residual = None for f_layer, b_layer, h_fc in zip( self.forward_layers, self.backward_layers, self.hidden_fc ): hidden_states_f, residual_f = f_layer( hidden_states, residual, inference_params=inference_params ) flip_residual = residual.flip([1]) if residual is not None else None hidden_states_b, residual_b = b_layer( hidden_states.flip([1]), flip_residual, inference_params=inference_params ) hidden_states = h_fc(torch.cat([hidden_states_f, hidden_states_b.flip([1])], dim=-1)) residual = 0.5 * (residual_f + residual_b.flip([1])) if not self.fused_add_norm: residual = ( (hidden_states + residual) if residual is not None else hidden_states ) hidden_states = self.norm_f(residual.to(dtype=self.norm_f.weight.dtype)) else: # Set prenorm=False here since we don't need the residual fused_add_norm_fn = ( rms_norm_fn if isinstance(self.norm_f, RMSNorm) else layer_norm_fn ) hidden_states = fused_add_norm_fn( hidden_states, self.norm_f.weight, self.norm_f.bias, eps=self.norm_f.eps, residual=residual, prenorm=False, residual_in_fp32=self.residual_in_fp32, ) return hidden_states class MambaLMHeadModel(nn.Module, GenerationMixin): def __init__( self, config: MambaConfig, initializer_cfg=None, device=None, dtype=None, ) -> None: self.config = config mamba_model = config.model_type d_model = config.d_model n_layer = config.n_layer vocab_size = config.vocab_size ssm_cfg = config.ssm_cfg rms_norm = config.rms_norm residual_in_fp32 = config.residual_in_fp32 fused_add_norm = config.fused_add_norm pad_vocab_size_multiple = 1 # config.pad_vocab_size_multiple esm_embed_dim = config.esm_embed_dim factory_kwargs = {"device": device, "dtype": dtype} super().__init__() # if vocab_size % pad_vocab_size_multiple != 0: # vocab_size += pad_vocab_size_multiple - ( # vocab_size % pad_vocab_size_multiple # ) Backbone = _MODEL_REGISTRY[mamba_model] self.backbone = Backbone( d_model=d_model, n_layer=n_layer, vocab_size=vocab_size, ssm_cfg=ssm_cfg, rms_norm=rms_norm, initializer_cfg=initializer_cfg, fused_add_norm=fused_add_norm, residual_in_fp32=residual_in_fp32, **factory_kwargs, ) self.lm_head = nn.Linear(d_model, vocab_size, bias=False, **factory_kwargs) self.esm_head = nn.Linear(esm_embed_dim, d_model, bias=False, **factory_kwargs) # Initialize weights and apply final processing self.apply( partial( _init_weights, n_layer=n_layer, **(initializer_cfg if initializer_cfg is not None else {}), ) ) self.tie_weights() def tie_weights(self): self.lm_head.weight = self.backbone.embedding.weight def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs): return self.backbone.allocate_inference_cache( batch_size, max_seqlen, dtype=dtype, **kwargs ) def forward( self, input_ids, embedding=None, position_ids=None, inference_params=None, num_last_tokens=0, ): """ "position_ids" is just to be compatible with Transformer generation. We don't use it. num_last_tokens: if > 0, only return the logits for the last n tokens """ if embedding is not None: embedding = self.esm_head(embedding) hidden_states = self.backbone( input_ids, embedding=embedding, inference_params=inference_params ) if num_last_tokens > 0: hidden_states = hidden_states[:, -num_last_tokens:] lm_logits = self.lm_head(hidden_states) CausalLMOutput = namedtuple("CausalLMOutput", ["logits", "hidden_states"]) return CausalLMOutput(logits=lm_logits, hidden_states=hidden_states) @classmethod def from_pretrained(cls, pretrained_model_name, device=None, dtype=None, **kwargs): config_data = load_config_hf(pretrained_model_name) config = MambaConfig(**config_data) model = cls(config, device=device, dtype=dtype, **kwargs) model.load_state_dict( load_state_dict_hf(pretrained_model_name, device=device, dtype=dtype) ) return model def save_pretrained(self, save_directory): """ Minimal implementation of save_pretrained for MambaLMHeadModel. Save the model and its configuration file to a directory. """ # Ensure save_directory exists if not os.path.exists(save_directory): os.makedirs(save_directory) # Save the model's state_dict model_path = os.path.join(save_directory, "pytorch_model.bin") torch.save(self.state_dict(), model_path) # Save the configuration of the model config_path = os.path.join(save_directory, "config.json") with open(config_path, "w") as f: json.dump(self.config.__dict__, f)