import pandas as pd import os import subprocess import sys from Bio import SeqIO import shutil from fuson_plm.utils.logging import open_logfile, log_update def ensure_mmseqs_in_path(mmseqs_dir): """ Checks if MMseqs2 is in the PATH. If it's not, add it. MMseqs2 will not run if this is not done correctly. Args: mmseqs_dir (str): Directory containing MMseqs2 binaries """ mmseqs_bin = os.path.join(mmseqs_dir, 'mmseqs') # Check if mmseqs is already in PATH if shutil.which('mmseqs') is None: # Export the MMseqs2 directory to PATH os.environ['PATH'] = f"{mmseqs_dir}:{os.environ['PATH']}" log_update(f"\tAdded {mmseqs_dir} to PATH") def process_fasta(fasta_path): fasta_sequences = SeqIO.parse(open(fasta_path),'fasta') d = {} for fasta in fasta_sequences: id, sequence = fasta.id, str(fasta.seq) d[id] = sequence return d def analyze_clustering_result(input_fasta: str, tsv_path: str): """ Args: input_fasta (str): path to input fasta file """ # Process input fasta input_d = process_fasta(input_fasta) # Process clusters.tsv clusters = pd.read_csv(f'{tsv_path}',sep='\t',header=None) clusters = clusters.rename(columns={ 0: 'representative seq_id', 1: 'member seq_id' }) clusters['representative seq'] = clusters['representative seq_id'].apply(lambda seq_id: input_d[seq_id]) clusters['member seq'] = clusters['member seq_id'].apply(lambda seq_id: input_d[seq_id]) # Sort them so that splitting results are reproducible clusters = clusters.sort_values(by=['representative seq_id','member seq_id'],ascending=True).reset_index(drop=True) return clusters def make_fasta(sequences: dict, fasta_path: str): """ Makes a fasta file from sequences, where the key is the header and the value is the sequence. Args: sequences (dict): A dictionary where the key is the header and the value is the sequence. Returns: str: The path to the fasta file. """ with open(fasta_path, 'w') as f: for header, sequence in sequences.items(): f.write(f'>{header}\n{sequence}\n') return fasta_path def run_mmseqs_clustering(input_fasta, output_dir, min_seq_id=0.3, c=0.8, cov_mode=0, cluster_mode=0, path_to_mmseqs='fuson_plm/mmseqs'): """ Runs MMSeqs2 clustering using easycluster module Args: input_fasta (str): path to input fasta file, formatted >header\nsequence\n>header\nsequence.... output_dir (str): path to output dir for clustering results min_seq_id (float): number [0,1] representing --min-seq-id in cluster command c (float): nunber [0,1] representing -c in cluster command cov_mode (int): number 0, 1, 2, or 3 representing --cov-mode in cluster command cluster_mode (int): number 0, 1, or 2 representing --cluster-mode in cluster command """ # Get mmseqs dir log_update("\nRunning MMSeqs clustering...") mmseqs_dir = os.path.join(path_to_mmseqs[0:path_to_mmseqs.index('/mmseqs')], 'mmseqs/bin') # Ensure MMseqs2 is in the PATH ensure_mmseqs_in_path(mmseqs_dir) # Define paths for MMseqs2 mmseqs_bin = "mmseqs" # Ensure this is in your PATH or provide the full path to mmseqs binary # Create the output directory os.makedirs(output_dir, exist_ok=True) # Run MMseqs2 easy-cluster cmd_easy_cluster = [ mmseqs_bin, "easy-cluster", input_fasta, os.path.join(output_dir, "mmseqs"), output_dir, "--min-seq-id", str(min_seq_id), "-c", str(c), "--cov-mode", str(cov_mode), "--cluster-mode", str(cluster_mode), "--dbtype", "1" ] # Write the command to a log file log_update("\n\tCommand entered to MMSeqs2:") log_update("\t" + " ".join(cmd_easy_cluster) + "\n") subprocess.run(cmd_easy_cluster, check=True) log_update(f"Clustering completed. Results are in {output_dir}") def cluster_summary(clusters: pd.DataFrame): """ Summarizes how many clusters were formed, how big they are, etc ... """ grouped_clusters = clusters.groupby('representative seq_id')['member seq_id'].count().reset_index().rename(columns={'member seq_id':'member count'}) assert len(grouped_clusters) == len(clusters['representative seq_id'].unique()) # make sure number of cluster reps = # grouped clusters total_seqs = sum(grouped_clusters['member count']) log_update(f"Created {len(grouped_clusters)} clusters of {total_seqs} sequences") log_update(f"\t{len(grouped_clusters.loc[grouped_clusters['member count']==1])} clusters of size 1") csize1_seqs = sum(grouped_clusters[grouped_clusters['member count']==1]['member count']) log_update(f"\t\tsequences: {csize1_seqs} ({round(100*csize1_seqs/total_seqs, 2)}%)") log_update(f"\t{len(grouped_clusters.loc[grouped_clusters['member count']>1])} clusters of size > 1") csizeg1_seqs = sum(grouped_clusters[grouped_clusters['member count']>1]['member count']) log_update(f"\t\tsequences: {csizeg1_seqs} ({round(100*csizeg1_seqs/total_seqs, 2)}%)") log_update(f"\tlargest cluster: {max(grouped_clusters['member count'])}") log_update("\nCluster size breakdown below...") value_counts = grouped_clusters['member count'].value_counts().reset_index().rename(columns={'index':'cluster size (n_members)','member count': 'n_clusters'}) log_update(value_counts.sort_values(by='cluster size (n_members)',ascending=True).to_string(index=False))