--- tags: - bertopic library_name: bertopic pipeline_tag: text-classification --- # bbc_news_topics This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. ## Usage To use this model, please install BERTopic: ``` pip install -U bertopic ``` You can use the model as follows: ```python from bertopic import BERTopic topic_model = BERTopic.load("CarlosMorales/bbc_news_topics") topic_model.get_topic_info() ``` ## Topic overview * Number of topics: 3 * Number of training documents: 100
Click here for an overview of all topics. | Topic ID | Topic Keywords | Topic Frequency | Label | |----------|----------------|-----------------|-------| | -1 | the - of - to - and - eu | 28 | -1_the_of_to_and | | 0 | the - of - to - and - in | 6 | 0_the_of_to_and | | 1 | the - to - of - and - in | 66 | 1_the_to_of_and |
## Training hyperparameters * calculate_probabilities: False * language: english * low_memory: False * min_topic_size: 10 * n_gram_range: (1, 1) * nr_topics: None * seed_topic_list: None * top_n_words: 10 * verbose: False * zeroshot_min_similarity: 0.7 * zeroshot_topic_list: None ## Framework versions * Numpy: 1.26.4 * HDBSCAN: 0.8.33 * UMAP: 0.5.6 * Pandas: 2.2.1 * Scikit-Learn: 1.4.1.post1 * Sentence-transformers: 2.6.1 * Transformers: 4.39.3 * Numba: 0.59.1 * Plotly: 5.20.0 * Python: 3.11.6