from dataclasses import dataclass from typing import Optional,Tuple,List from collections import namedtuple import math import time import json import torch import torch.nn as nn from torch import Tensor from torch.nn import functional as F from torch.utils.checkpoint import checkpoint try: from .configuration_dcpythia import DCPythiaConfig except: from configuration_dcpythia import DCPythiaConfig from transformers.modeling_utils import PreTrainedModel class KVKWCache(nn.Module): def __init__(self, max_batch_size, max_seq_length, n_heads, head_dim, window_size=2048, dtype=torch.float16, use_kw_cache=True): super().__init__() self.head_dim = head_dim self.kw_dim = 2 * n_heads self.n_heads = n_heads self.window_size = window_size self.use_kw_cache = use_kw_cache if window_size is None: self.seq_length = max_seq_length else: self.seq_length = min(window_size, max_seq_length) cache_shape = (max_batch_size, n_heads, self.seq_length, head_dim) kw_cache_shape = (max_batch_size, self.seq_length, 2, n_heads, n_heads) self.register_buffer('k_cache', torch.zeros(cache_shape, dtype=dtype)) self.register_buffer('v_cache', torch.zeros(cache_shape, dtype=dtype)) if self.use_kw_cache: self.register_buffer('kw_cache', torch.zeros(kw_cache_shape, dtype=dtype)) def update(self, input_pos, k_val, v_val, kw_val=None): # kw_val B,N,S,2,N B2NSD # input_pos: [S], k_val: [B, H, S, D] assert input_pos.shape[-1] == k_val.shape[2] B,N,S,D = v_val.shape k_out = self.k_cache v_out = self.v_cache if self.use_kw_cache: kw_out = self.kw_cache else: kw_out = None if self.window_size is None: k_out[:, :, input_pos] = k_val v_out[:, :, input_pos] = v_val if self.use_kw_cache and kw_val is not None: kw_out[:,input_pos] = kw_val elif S == 1: input_pos = input_pos % self.seq_length v_out[:, :, input_pos] = v_val k_out[:, :, input_pos] = k_val if self.use_kw_cache and kw_val is not None: kw_out[:,input_pos] = kw_val else: # prefill start = max(0, input_pos[-1]-self.seq_length+1) input_pos = input_pos[start:] % self.seq_length v_out[:, :, input_pos] = v_val[:,:,start:] k_out[:, :, input_pos] = k_val[:,:,start:] if self.use_kw_cache and kw_val is not None: kw_out[:, input_pos] = kw_val[:,start:] return k_out, v_out, kw_out class DCPythia(PreTrainedModel): config_class=DCPythiaConfig def __init__(self, config: DCPythiaConfig) -> None: super().__init__(config) self.config = config self.tok_embeddings = nn.Embedding(config.vocab_size, config.dim) self.layers = nn.ModuleList(DCPythiaBlock(config, lidx) for lidx in range(config.n_layer)) self.norm = nn.LayerNorm(config.dim, eps=config.norm_eps) self.output = nn.Linear(config.dim, config.vocab_size, bias=False) # no bias in pythia self.use_gradient_checkpointing = config.use_gradient_checkpointing self.is_training = config.is_training self.freqs_cis: Optional[Tensor] = None self.rotary_ndims = int(config.head_dim * config.rotary_pct) self.mask_cache: Optional[Tensor] = None self.window_size = config.window_size self.max_batch_size = -1 self.max_seq_length = -1 def setup_caches(self, max_batch_size, max_seq_length, set_kv_cache=True): if self.max_seq_length >= max_seq_length and self.max_batch_size >= max_batch_size: return head_dim = self.config.dim // self.config.n_head max_seq_length = find_multiple(max_seq_length, 8) self.max_seq_length = max_seq_length self.max_batch_size = max_batch_size if not self.is_training: for b in self.layers: if set_kv_cache: use_kw_cache = False if b.attention.query_wise else True b.attention.kv_cache = KVKWCache(max_batch_size, max_seq_length, self.config.n_local_heads, head_dim, window_size=b.attention.window_size, use_kw_cache=use_kw_cache) b.attention.dyn_w_proj.merge_weights() if not b.attention.use_sw: dtype = b.attention.wo.weight.dtype device = b.attention.wo.weight.device b.attention.dyn_w_proj.sw = b.attention.dyn_w_proj.sw.to(device=device, dtype=dtype) b.attention.dyn_w_proj.pre_proj.w = b.attention.dyn_w_proj.pre_proj.w.to(device=device, dtype=dtype) b.attention.dyn_w_proj.post_proj.w = b.attention.dyn_w_proj.post_proj.w.to(device=device, dtype=dtype) self.freqs_cis = precompute_freqs_cis(self.config.block_size, self.rotary_ndims, self.config.rope_base).to(self.tok_embeddings.weight.device) if self.is_training: self.causal_mask = torch.tril(torch.ones(self.config.block_size, self.config.block_size, dtype=torch.bool, device=self.tok_embeddings.weight.device)) elif self.window_size is None: self.causal_mask = torch.tril(torch.ones(max_seq_length, max_seq_length, dtype=torch.bool, device=self.tok_embeddings.weight.device)) else: self.causal_mask = torch.stack([make_window_mask(max_seq_length, self.config.window_size), torch.tril(torch.ones(self.max_seq_length, self.max_seq_length, dtype=torch.bool))]) # LG def generate(self, input_ids, num_tokens_to_generate=10, compiled_decode_one_token=None): batch_size, seq_length = input_ids.shape input_pos = torch.arange(seq_length, device=self.device) generated_ids = torch.zeros(batch_size, seq_length + num_tokens_to_generate, dtype=torch.int, device=self.device) generated_ids[:, :seq_length] = input_ids.to(self.device).to(torch.int) logits = self.forward(input_ids, input_pos=input_pos,return_tensor=True) _next_token = torch.argmax(logits[:, -1], dim=-1)[:, None] next_token = torch.zeros(self.max_batch_size, 1, device=self.device, dtype=torch.int) next_token[:batch_size] = _next_token generated_ids[:, seq_length] = next_token[:batch_size, 0] input_pos = torch.tensor([seq_length], device=self.device) for _ in range(1, num_tokens_to_generate): if compiled_decode_one_token is not None: next_token = compiled_decode_one_token(self, next_token.clone(), input_pos) else: next_token = self.decode_one_token(next_token.clone(), input_pos) generated_ids[:, input_pos+1] = next_token.int()[:batch_size] input_pos += 1 return generated_ids def decode_one_token(self, cur_token, input_pos): logits = self.forward( cur_token, input_pos=input_pos, return_tensor=True, ) new_token = torch.argmax(logits[:, -1], dim=-1)[:,None] return new_token def forward(self, idx: Tensor, input_pos: Optional[Tensor] = None, return_tensor=False) -> Tensor: assert self.freqs_cis is not None, "Caches must be initialized first" if input_pos is None: input_pos = torch.arange(idx.shape[-1], device=idx.device, dtype=torch.int) if self.window_size is None or self.is_training: mask = self.causal_mask[None, None, input_pos] else: mask = self.causal_mask[None, None,:,input_pos] freqs_cis = self.freqs_cis[input_pos][:idx.shape[-1]] x = self.tok_embeddings(idx) for i, layer in enumerate(self.layers): if self.is_training or self.window_size is None : layer_mask = mask gen_mask = None elif self.window_size is not None: layer_mask = mask[:,:,1] if layer.attention.window_size is None else mask[:,:,0] gen_mask = mask[:,:,1] if layer.attention.window_size is not None else None if self.use_gradient_checkpointing: x = checkpoint(layer, x, input_pos, freqs_cis, layer_mask) else: x = layer(x, input_pos, freqs_cis, layer_mask, gen_mask=gen_mask) x = self.norm(x) logits = self.output(x) if return_tensor: return logits else: CausalLMOutput = namedtuple("CausalLMOutput", ["logits"]) return CausalLMOutput(logits=logits) class DCPythiaBlock(nn.Module): def __init__(self, config: DCPythiaConfig, lidx) -> None: super().__init__() self.lidx = lidx self.attention = DCMHAttention(config, lidx) self.feed_forward = FeedForward(config) self.ffn_norm = nn.LayerNorm(config.dim, eps=config.norm_eps) self.attention_norm = nn.LayerNorm(config.dim, eps=config.norm_eps) self.use_parallel_residual = config.use_parallel_residual def forward(self, x: Tensor, input_pos: Tensor, freqs_cis: Tensor, mask: Tensor, gen_mask=None) -> Tensor: h = x + self.attention(self.attention_norm(x), freqs_cis, mask, input_pos, fast_infer=True, gen_mask=gen_mask) if self.use_parallel_residual: out = h + self.feed_forward(self.ffn_norm(x)) else: out = h + self.feed_forward(self.ffn_norm(h)) return out class DynamicWeightProjection(nn.Module): def __init__(self, num_heads=32, num_groups=1, residual=True, query_input_dim=4096, dynamic_squeeze_ratio=16, dynamic_w_hidden_dim=128,dtype=torch.float16,use_sw=False): super().__init__() self.num_heads = num_heads self.num_groups = num_groups self.query_input_dim = query_input_dim self.dynamic_squeeze_ratio = dynamic_squeeze_ratio self.dynamic_w_hidden_dim = dynamic_w_hidden_dim self.dw_hidden_activation = nn.GELU() self.num_heads_per_group = self.num_heads // self.num_groups self.dw_activation = nn.Tanh() self.dw1_norm = RMSnormNoscale(dim=-1) self.use_sw = use_sw self.pre_proj = CrossHeadProjection('pre', num_heads=self.num_heads, use_sw=use_sw) self.post_proj = CrossHeadProjection('post', num_heads=self.num_heads, use_sw=use_sw) dynamic_hidden_dim = self.num_heads_per_group // self.dynamic_squeeze_ratio self.dynamic_hidden_dim = dynamic_hidden_dim self.dw1 = nn.parameter.Parameter(torch.zeros(self.query_input_dim, self.num_groups, 4, self.dynamic_w_hidden_dim, dtype=dtype)) #(4096, 1, 4, 128) G, K, M = self.num_groups, self.dynamic_w_hidden_dim, self.num_heads_per_group I = dynamic_hidden_dim * 2 self.qkw = nn.parameter.Parameter(torch.zeros([G, 4, K, I, M], dtype=dtype)) # (1, 4, 128, 4, 32) self.dd = nn.parameter.Parameter(torch.zeros(self.query_input_dim, self.num_groups, self.num_heads_per_group * 4, dtype=dtype)) # (4096, 1, 128) self.merge_weights() def merge_weights(self): self.dw_m = nn.parameter.Parameter(torch.cat([self.dw1.reshape(self.query_input_dim, -1), self.dd.squeeze(1)], dim=-1)).to(self.dw1.device) # E,(4*K + K) K=2*N*I self.qkw_m = nn.parameter.Parameter(self.qkw.permute(0,1,2,3,4).reshape(4,self.dynamic_w_hidden_dim,-1)).to(self.dw1.device) #(4,K,I*M) if self.use_sw: self.sw = nn.parameter.Parameter(torch.stack([self.pre_proj.w, self.post_proj.w]).squeeze(1) + torch.eye(self.num_heads) ).to(self.dw1.device) # (2,N,N) sw + identity matrix else: self.sw = (torch.eye(self.num_heads).expand(2,self.num_heads,self.num_heads)).to(self.dw1.device) # identity matrix (2,N,N) def forward(self,query_vec,KW:Optional[torch.Tensor]=None, gen_cache:Optional[bool]=True): dw_hidden = torch.einsum('BTD,DGCK->BTGCK', query_vec, self.dw1) # C=4 [pre,post]*[query,key] dw_hidden = self.dw_hidden_activation(dw_hidden) #BTGCK w1, w2 = torch.split(torch.einsum('BTGCK,GCKIM->BTGCIM', dw_hidden, self.qkw), self.qkw.shape[-2]//2, dim=-2) #BTGC(2I)M -> [BTGCIM] * 2 w1 = self.dw1_norm(w1) # BTGCIM pre_qw1, pre_kw1, post_qw1, post_kw1 = unbind(w1, 4, dim=3) # BTG4IM->[BTGIM]*4 pre_qw2, pre_kw2, post_qw2, post_kw2 = unbind(w2, 4, dim=3) dd = torch.einsum('BTD,DGM->BTGM', query_vec, self.dd) # BTG(4M) dd = self.dw_activation(dd) pre_qdd, pre_kdd, post_qdd, post_kdd = torch.split(dd, dd.shape[-1] // 4, dim=-1) # BTG(4N)->[BTGN]*4 pre_dw_args = (pre_qw1, pre_qw2, pre_kw1, pre_kw2, pre_qdd, pre_kdd) post_dw_args = (post_qw1, post_qw2, post_kw1, post_kw2, post_qdd, post_kdd) if gen_cache: # generate KW cache pre_kw = torch.einsum('BSGIM, BSGIN->BSMN', pre_kw1, pre_kw2) + torch.diag_embed(pre_kdd.squeeze(2)) # merge kw and kdd post_kw = torch.einsum('BSGIM, BSGIN->BSMN', post_kw1, post_kw2) + torch.diag_embed(post_kdd.squeeze(2)) KW = torch.stack((pre_kw, post_kw), dim=-3) # BSMN,BSMN->BS2MN return pre_dw_args, post_dw_args, KW class RMSnormNoscale(nn.Module): def __init__(self, epsilon=1e-6, dim=-1): super().__init__() self.dim = dim self.epsilon = epsilon def forward(self, inputs): var = inputs.pow(2).mean(dim=self.dim, keepdim=True) normed_inputs = inputs * torch.rsqrt(var + self.epsilon) return normed_inputs class RMSnorm(nn.Module): def __init__(self, hid_dim=128, epsilon=1e-6, dim=-1): super().__init__() self.dim = dim self.hid_dim = hid_dim self.epsilon = epsilon self.scale = nn.parameter.Parameter(data=torch.ones(self.hid_dim)) def forward(self, inputs): var = inputs.pow(2).mean(dim=self.dim, keepdim=True) normed_inputs = inputs * torch.rsqrt(var + self.epsilon) normed_inputs = normed_inputs * self.scale return normed_inputs class CrossHeadProjection(nn.Module): def __init__(self, mode, num_heads=16, num_groups=1, dtype=torch.float16, use_sw=False): super().__init__() self.mode = mode self.use_sw = use_sw self.num_heads = num_heads self.num_groups = num_groups self.num_heads_per_group = self.num_heads // self.num_groups if self.use_sw: self.w = nn.parameter.Parameter(data=torch.zeros(self.num_groups, self.num_heads_per_group, self.num_heads_per_group, dtype=dtype)) else: self.register_buffer('w', torch.eye(self.num_heads_per_group, dtype=dtype).expand(self.num_groups, self.num_heads_per_group, self.num_heads_per_group)) def forward(self, inputs, dws:Optional[Tuple[Tensor,Tensor, Tensor,Tensor, Tensor,Tensor]]=None, query_vec=None, key_vec=None, proj_w:Optional[Tensor]=None, fast_infer=True): if proj_w is not None: ret = torch.einsum('BNTS,BSNM->BMTS', inputs, proj_w) else: assert dws is not None qw1, qw2, kw1, kw2, qdd, kdd = dws inputs = inputs.unsqueeze(1) #BNTS->BGNTS # apply sw ret = torch.einsum('BGMTS,GMN->BGNTS', inputs, self.w) if self.use_sw else inputs if fast_infer: inputs_label = 'BGMTS' hidden_sym = 'I'; hidden_label = inputs_label.replace('M', 'I') # BGITS # apply qw and kw for sym, (w1, w2) in zip(['T', 'S'], [(qw1, qw2), (kw1, kw2)]): dw_label = f'B{sym}G{hidden_sym}M' # w1: BTGIM, dw_label:BTGIM dynamic_hidden_dim = w1.shape[dw_label.index(hidden_sym)] eqn1 = f'{inputs_label},{dw_label}->{hidden_label}' # 'BGMTS,BTGMI->BGITS' eqn2 = f'{hidden_label},{dw_label}->{inputs_label}' # 'BGITS,BTGMI->BGMTS' for i in range(dynamic_hidden_dim): hidden = torch.einsum(eqn1.replace(hidden_sym, ''), inputs, w1[..., i, :]) # BGMTS,BTG(I)M->BGTS out = torch.einsum(eqn2.replace(hidden_sym, ''), hidden, w2[..., i, :]) # 'BG(I)TS,BTG(I)M->BGMTS' ret = ret + out # apply qdd and kdd for sym, dd in zip(['T', 'S'], [qdd, kdd]): dd_label = f'B{sym}GM' dout = torch.einsum(f'{inputs_label},{dd_label}->{inputs_label}', inputs, dd) # BGMTS,B(T/S)GM->BGMTS ret = ret + dout else: # apply qw and kw (BTGIN) x_inter = torch.einsum('BGNTS, BTGIN->BGTSI', inputs, qw1) qw_out = torch.einsum('BGTSI, BTGIN->BGNTS', x_inter, qw2) ret = ret + qw_out x_inter = torch.einsum('BGNTS, BSGIN->BGTSI', inputs, kw1) kw_out = torch.einsum('BGTSI, BSGIN->BGNTS', x_inter, kw2) ret = ret + kw_out # apply qdd(BTGN) and kdd(BSGN) ret = ret + torch.einsum('BGNTS, BTGN->BGNTS', inputs, qdd) ret = ret + torch.einsum('BGNTS, BSGN->BGNTS', inputs, kdd) ret = ret.squeeze(1) # BGNTS->BNTS return ret class DCMHAttention(nn.Module): def __init__(self, config: DCPythiaConfig, lidx, use_sw=False): super().__init__() assert config.dim % config.n_head == 0 total_head_dim = (config.n_head + 2 * config.n_local_heads) * config.head_dim # key, query, value projections for all heads, but in a batch self.lidx = lidx self.wqkv = nn.Linear(config.dim, total_head_dim, bias=config.use_linear_bias) self.wo = nn.Linear(config.dim, config.dim, bias=config.use_linear_bias) self.kv_cache = None self.n_head = config.n_head self.head_dim = config.head_dim self.n_local_heads = config.n_local_heads self.is_training = config.is_training self.dim = config.dim self.use_dcmha = config.use_dcmha self.scale_factor = 1 / math.sqrt(self.head_dim) self.q_chunk_size = config.q_chunk_size self.use_sw = use_sw self.dyn_w_proj = DynamicWeightProjection(num_heads=self.n_head, query_input_dim=config.dim, dynamic_squeeze_ratio=self.n_head//2, dynamic_w_hidden_dim=self.n_head*4, use_sw=use_sw) self.use_qk_norm = config.use_qk_norm if self.use_qk_norm: self.q_norm = RMSnorm(hid_dim=self.head_dim) self.k_norm = RMSnorm(hid_dim=self.head_dim) self.window_types = { "LG":[256, None], "LGLL":[256, None, 256, 256], "LGL6":[256, None, 256, 256, 256, 256, 256, 256], } self.query_wise = config.query_wise if config.window_type is None: # LG self.window_size = None if self.lidx % 2 == 1 else config.window_size else: window_l = self.window_types[config.window_type] self.window_size = window_l[self.lidx % len(window_l)] self.rotary_ndims = int(self.head_dim * config.rotary_pct) if not self.is_training: self._register_load_state_dict_pre_hook(self.load_hook) def load_hook(self, state_dict, prefix, *args): if prefix + "wq.weight" in state_dict: wq = state_dict.pop(prefix + "wq.weight") wk = state_dict.pop(prefix + "wk.weight") wv = state_dict.pop(prefix + "wv.weight") state_dict[prefix + "wqkv.weight"] = torch.cat([wq, wk, wv]) if prefix + "wq.bias" in state_dict: wq_b = state_dict.pop(prefix + "wq.bias") wk_b = state_dict.pop(prefix + "wk.bias") wv_b = state_dict.pop(prefix + "wv.bias") state_dict[prefix + "wqkv.bias"] = torch.cat([wq_b, wk_b, wv_b]) def _generate_fast(self, x, input_pos, q, k, v, k_mask): B,T,D = x.shape N,I = self.n_head, self.dyn_w_proj.dynamic_hidden_dim # 32, 2 dw_hidden, dd = (x @ self.dyn_w_proj.dw_m).split([2*2*N*(2*I), 2*2*N*1], -1) # BTD, D(4K+4N) -> BT(4K+4N) -> BT(4K), BT(4N) dw_hidden = dw_hidden.view((B,T,4,-1,1)) # BT(4K) -> BT4K1 dw = (self.dyn_w_proj.dw_hidden_activation(dw_hidden) * self.dyn_w_proj.qkw_m).sum(-2) # gelu, BT4K1, 4K(IM)->BT4K(IM)->BT4(IM) w1, w2 = dw.view((B,T,2,2,-1,N)).split(I,-2) # BT4(IM)->BT{pre/post}{q/k}IM->[BT22IM] * 2 w1 = self.dyn_w_proj.dw1_norm(w1) # BT22IN qkdd = self.dyn_w_proj.dw_activation(dd.view((B,T,2,2,N))) # BT2{2}N1->BT2{2}N tanh qkw = torch.einsum('BTKJIN,BTKJIM->BTKJNM', w1, w2) + torch.diag_embed(qkdd) # j=k=2, BT2{2}NM q/k, pre/post if self.query_wise: # TODO: do not generate kw and kdd qw, _ = qkw.unbind(3) # BS2NM kw_new = None qw = qw + self.dyn_w_proj.sw else: qw, kw_new = qkw.unbind(3) # BS{pre/post}{q/k}NM -> BS{pre/post}NM * 2 kw_new = kw_new + self.dyn_w_proj.sw # BS2NM + 2NM-> BS2NM if self.kv_cache is not None: k, v, kw_out = self.kv_cache.update(input_pos, k, v, kw_val=kw_new) #BNT2M logits = q @ k.transpose(-2, -1) * self.scale_factor if self.query_wise: w = qw # B12NM else: w = qw + kw_out # B12NM,BS2NM -> BS2NM wl, w = w.permute(0,2,3,4,1).unbind(1) # BS2NM->B2NMS->[BNMS]*2 logits = (logits * wl).sum(1).unsqueeze(2) # BN1S, BNMS -> BNMS-> BMS-> BM1S min_value = torch.finfo(torch.float16).min logits = torch.where(k_mask, logits, min_value) probs = logits.softmax(-1) probs = (probs * w).sum(1).unsqueeze(2) y = probs @ v return y def forward(self, x: Tensor, freqs_cis: Tensor, mask: Tensor, input_pos: Optional[Tensor] = None, fast_infer=True, gen_mask=None) -> Tensor: bsz, seqlen, _ = x.shape kv_size = self.n_local_heads * self.head_dim q, k, v = self.wqkv(x).split([self.dim, kv_size, kv_size], dim=-1) q = q.view(bsz, seqlen, self.n_head, self.head_dim) # BSND k = k.view(bsz, seqlen, self.n_local_heads, self.head_dim) v = v.view(bsz, seqlen, self.n_local_heads, self.head_dim) if self.use_qk_norm: q, k = self.q_norm(q), self.k_norm(k) if self.rotary_ndims == self.head_dim: q = apply_rotary_emb(q, freqs_cis) #BTND k = apply_rotary_emb(k, freqs_cis) else: q_rot = q[..., : self.rotary_ndims] q_pass = q[..., self.rotary_ndims :] k_rot = k[..., : self.rotary_ndims] k_pass = k[..., self.rotary_ndims :] q_rot = apply_rotary_emb(q_rot, freqs_cis, mode='half') #BTND k_rot = apply_rotary_emb(k_rot, freqs_cis, mode='half') q = torch.cat((q_rot, q_pass), dim=-1) k = torch.cat((k_rot, k_pass), dim=-1) q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v)) # BNSD if self.is_training: N, D, I = self.n_head, self.head_dim, self.dyn_w_proj.dynamic_hidden_dim; # 6.7B B,T,E = x.shape if self.use_dcmha: project_logits = True project_probs = True if project_probs: dw_hidden, dd = (x @ self.dyn_w_proj.dw_m).split([2*2*N*(2*I), 2*2*N*1], -1) dw_hidden = self.dyn_w_proj.dw_hidden_activation(dw_hidden) dw_hidden = dw_hidden.view(dw_hidden.shape[:2]+(4,-1)) #B T (4 K) -> B T 4 K # reshape dw = torch.einsum('B T C K, C K D -> B T C D', dw_hidden, self.dyn_w_proj.qkw_m) # BT4K,4K(MI)->BT4(MI) shape = (B,T,2*2,-1,N)# if project_logits else (B,T,2,N,-1) # BT(pre/post)(q/k)IN w1, w2 = dw.view(shape).split(I,-2) w1 = self.dyn_w_proj.dw1_norm(w1) # BT22IN if self.use_sw: pre_sw, post_sw = self.dyn_w_proj.sw.unbind(0) else: pre_sw, post_sw = None, None pre_qw1, pre_kw1, post_qw1, post_kw1 = w1.unbind(2) # BT(2{*2})IN->[BTIN]*4 pre_qw2, pre_kw2, post_qw2, post_kw2 = w2.unbind(2) qkdd = F.tanh(dd).squeeze(-1).view(shape[:-2] + (N,)) # BT(2{*2})N1->BT(2{*2})N pre_qdd, pre_kdd, post_qdd, post_kdd = qkdd.unbind(2) # BT(2{*2})N->[BTN]*4 y = torch.zeros(B, N, T, D).to(q.device, dtype=torch.float16) for i in range(T // self.q_chunk_size): start, stop = i * self.q_chunk_size, (i + 1) * self.q_chunk_size kv_start = max(0, stop - self.q_chunk_size -self.window_size) _q = q[:, :, start : stop, :] _k, _v = k[:, :, kv_start : stop, :], v[:, :, kv_start : stop, :] _atten_mask = mask[:, :, start : stop, kv_start : stop] _pre_proj_dw_args = slice_dw(pre_sw, pre_qw1, pre_qw2, pre_kw1, pre_kw2, pre_qdd, pre_kdd, start, stop, kv_start) \ if project_logits else None _post_proj_dw_args = slice_dw(post_sw, post_qw1, post_qw2, post_kw1, post_kw2, post_qdd, post_kdd, start,stop,kv_start) \ if project_probs else None _o = _atten_context(_q, _k, _v, _atten_mask, _pre_proj_dw_args, _post_proj_dw_args) y[:,:,start:stop] = _o else: y = torch.zeros(B, N, T, D).to(q.device, dtype=torch.float16) for i in range(T // self.q_chunk_size): start, stop = i * self.q_chunk_size, (i + 1) * self.q_chunk_size kv_start = max(0, stop - self.q_chunk_size -self.window_size) _q = q[:, :, start : stop, :] _k, _v = k[:, :, kv_start : stop, :], v[:, :, kv_start : stop, :] _atten_mask = mask[:, :, start : stop, kv_start : stop] _pre_proj_dw_args, _post_proj_dw_args = None, None _o = _atten_context(_q, _k, _v, _atten_mask, _pre_proj_dw_args, _post_proj_dw_args) y[:,:,start:stop] = _o else: # inference if seqlen == 1: # one-token generation k_mask = mask if self.window_size is None else gen_mask[:, :, :,:self.kv_cache.seq_length] if fast_infer: y = self._generate_fast(x, input_pos, q, k, v, k_mask) else: assert not self.query_wise # generate dw from hidden_state pre_proj_dw_args, post_proj_dw_args, kw_new = self.dyn_w_proj(x, gen_cache=True) # update kvkw cache kw_new = kw_new + self.dyn_w_proj.sw # absorb residual or sw into kw cache if self.kv_cache is not None: k, v, kw_out = self.kv_cache.update(input_pos, k, v, kw_val=kw_new) # BNSD, BNSD, BS2NN logits = q @ k.transpose(-2, -1) * self.scale_factor # merge pre_w and apply it pre_qw1, pre_qw2, pre_kw1, pre_kw2, pre_qdd, pre_kdd = pre_proj_dw_args pre_qw = torch.einsum('BTGIN, BTGIM->BTNM',pre_qw1, pre_qw2) + torch.diag_embed(pre_qdd.squeeze(2)) pre_w = pre_qw + kw_out[:,:,0] # B1NM, BSNM -> BSNM logits = self.dyn_w_proj.pre_proj(logits, proj_w=pre_w.squeeze(1)) logits = torch.where(k_mask, logits, torch.finfo(torch.float16).min) probs = logits.softmax(-1) # merge post_w and apply it post_qw1, post_qw2, post_kw1, post_kw2, post_qdd, post_kdd = post_proj_dw_args post_qw = torch.einsum('BTGIN, BTGIM->BTNM', post_qw1, post_qw2) + torch.diag_embed(post_qdd.squeeze(2)) post_w = post_qw + kw_out[:,:,1] probs = self.dyn_w_proj.post_proj(probs, proj_w=post_w.squeeze(1)) y = probs @ v else: # prefill k_mask = mask[:,:,:,:k.shape[-2]] pre_proj_dw_args, post_proj_dw_args,kw_new = self.dyn_w_proj(x, gen_cache=True) kw_new = kw_new + self.dyn_w_proj.sw # absorb residual or sw into kw cache if self.kv_cache is not None: self.kv_cache.update(input_pos, k, v, kw_val=kw_new) # BNSD, BNSD, BS2NN logits = q @ k.transpose(-2, -1) * self.scale_factor logits = self.dyn_w_proj.pre_proj(logits, dws=pre_proj_dw_args, query_vec=x, key_vec=x, fast_infer=True) # XD BN1S logits = torch.where(k_mask, logits, torch.finfo(torch.float16).min) probs = logits.softmax(-1) probs = self.dyn_w_proj.post_proj(probs, dws=post_proj_dw_args, query_vec=x, key_vec=x, fast_infer=True) # BN1S y = probs @ v y = y.transpose(1, 2).contiguous().view(bsz, seqlen, self.dim) y = self.wo(y) return y class FeedForward(nn.Module): def __init__(self, config: DCPythiaConfig) -> None: super().__init__() self.w1 = nn.Linear(config.dim, config.intermediate_size, bias=config.use_linear_bias) self.w2 = nn.Linear(config.intermediate_size, config.dim, bias=config.use_linear_bias) def forward(self, x: Tensor) -> Tensor: return self.w2(F.gelu(self.w1(x))) def _atten_context(query, key, value, atten_mask, pre_proj_dw_args, post_proj_dw_args): logits = query @ key.transpose(-2, -1) if pre_proj_dw_args is not None: logits = _cross_head_proj(logits, *pre_proj_dw_args) logits = torch.where(atten_mask, logits, torch.finfo(torch.float16).min) probs = logits.softmax(-1) if post_proj_dw_args is not None: probs = _cross_head_proj(probs, *post_proj_dw_args) o = probs @ value # BNTS,BNSD->BNTD return o def _cross_head_proj(inputs, sw, qw1, qw2, kw1, kw2, qdd, kdd, loop_over_dynamic_hd=False): out = inputs + torch.einsum('BNTS,NM->BMTS', inputs, sw) if sw is not None else inputs for i in range(2): # qw1.shape[-2]): qhidden = (inputs * qw1[..., i, :].transpose(-2, -1).unsqueeze(-1)).sum(1) # BNTS,(BTN->BNT->BNT1)->BNTS->BTS qout = qhidden.unsqueeze(1) * qw2[..., i, :].transpose(-2, -1).unsqueeze(-1) # (BTS->B1TS),(BTN->BNT->BNT1)->BNTS out = out + qout khidden = (inputs * kw1[..., i, :].transpose(-2, -1).unsqueeze(-2)).sum(1) # BNTS,(BSN->BNS->BN1S)->BNTS->BTS kout = khidden.unsqueeze(1) * kw2[..., i, :].transpose(-2, -1).unsqueeze(-2) # (BTS->B1TS),(BSN->BNS->BNS1)->BNTS out = out + kout qdout = inputs * qdd.transpose(-2, -1).unsqueeze(-1); out = out + qdout # BNTS,(BTN->BNT->BNT1)->BNTS kdout = inputs * kdd.transpose(-2, -1).unsqueeze(-2); out = out + kdout # BNTS,(BSN->BNS->BN1S)->BNTS return out def find_multiple(n: int, k: int) -> int: if n % k == 0: return n return n + k - (n % k) def make_window_mask(t, window_size): col_idx = torch.tile(torch.arange(t).unsqueeze(0), [t, 1]) row_idx = torch.tile(torch.arange(t).unsqueeze(1), [1, t]) bias_mask = (col_idx + window_size >= row_idx).tril().view(t, t) return bias_mask def slice_dw(sw, qw1, qw2, kw1, kw2, qdd, kdd, start, stop, kv_start): return (sw, qw1[:, start : stop] if qw1 is not None else None, qw2[:, start : stop] if qw2 is not None else None, kw1[:, kv_start : stop] if kw1 is not None else None, kw2[:, kv_start : stop] if kw2 is not None else None, qdd[:, start : stop] if qdd is not None else None, kdd[:, kv_start : stop] if kdd is not None else None) def precompute_freqs_cis( seq_len: int, n_elem: int, base: int = 10000 ) -> Tensor: freqs = 1.0 / (base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem)) t = torch.arange(seq_len, device=freqs.device) freqs = torch.outer(t, freqs) freqs_cis = torch.polar(torch.ones_like(freqs), freqs) cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1) return cache.to(dtype=torch.float16) def unbind(ary, n, dim=0): return [torch.squeeze(a, dim=dim) for a in torch.split(ary, ary.shape[dim] // n, dim=dim)] def apply_rotary_emb(x: Tensor, freqs_cis: Tensor, mode='half') -> Tensor: if mode == 'half': xshaped = x.float().reshape(*x.shape[:-1], 2,-1).transpose(-1,-2) elif mode == 'alternative': xshaped = x.float().reshape(*x.shape[:-1], -1, 2) freqs_cis = freqs_cis.view(-1, xshaped.size(1), 1, xshaped.size(3), 2) x_out2 = torch.stack( [ xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1], xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1], ], -1, ) x_out2 = x_out2.flatten(3) return x_out2.type_as(x)