--- language: - en tags: - pytorch - causal-lm - dcformer - dcmha license: mit --- DCFormer-2.8B is a pretrained language model on the Pile with 300B tokens, which is a parameter and computation efficient attention architecture that tackles the shortcomings of MHA and increases the expressive power of the model by dynamically composing attention heads. It is short for DCFormer++2.8B and please see downstrem evaluations and more details in the paper[(Improving Transformers with Dynamically Composable Multi-Head Attention)](). In addition, we open-source Jax training code on [(Github)](https://github.com/Caiyun-AI/DCFormer/). We recommend compiled version of DCFormer with *torch.compile* for inference acceleration. Please refer to QuickStart section for compile implementation. ## Env You need to upgrade transformers to avoid [(loading problems)](https://github.com/huggingface/transformers/pull/29175). ``` pip install transformers>=4.40.2 ``` ## Quickstart ``` import torch from transformers import AutoTokenizer, AutoModelForCausalLM import os os.environ['TOKENIZERS_PARALLELISM'] = 'false' tokenizer = AutoTokenizer.from_pretrained("Caiyun-AI/DCFormer-2.8B") model = AutoModelForCausalLM.from_pretrained("Caiyun-AI/DCFormer-2.8B", trust_remote_code=True) device = torch.device('cuda') MAX_BATCH_SIZE = 1 MAX_SEQ_LENGTH = 2048 NUM_TOKENS_TO_GENERATE = 100 COMPILE = True _ = model.to(device=device,dtype=torch.float16) with torch.device(device): model.setup_caches(max_batch_size=MAX_BATCH_SIZE, max_seq_length=MAX_SEQ_LENGTH, set_kv_cache=True) def decode_one_token(model, cur_token, input_pos): logits = model(cur_token, input_pos=input_pos, return_tensor=True) new_token = torch.argmax(logits[:, -1], dim=-1)[:,None] return new_token prompt = "Beijing is the capital of China. London is the capital of" input_ids = tokenizer.encode(prompt, return_tensors='pt') compiled_decode_one_token = torch.compile(decode_one_token,mode="reduce-overhead", fullgraph=True) if COMPILE else None with torch.no_grad(): generated_ids = model.generate(input_ids.to(device),num_tokens_to_generate=NUM_TOKENS_TO_GENERATE, compiled_decode_one_token=compiled_decode_one_token) text = tokenizer.decode(generated_ids[0]) print('generated text:', text) ```