from transformers.configuration_utils import PretrainedConfig from transformers.utils import logging from typing import Optional,Tuple,List def find_multiple(n: int, k: int) -> int: if n % k == 0: return n return n + k - (n % k) class DCFormerConfig(PretrainedConfig): model_type = "dcformer" ''' DCFormerConfig is a config class for DCFormer, which is adpated from https://github.com/pytorch-labs/gpt-fast/blob/main/model.py#L21 ''' def __init__( self, block_size: int = 2048, vocab_size: int = 32000, n_layer: int = 32, n_head: int = 32, dim: int = 2560, intermediate_size: int = None, n_local_heads: int = -1, head_dim: int = 64, rope_base: float = 10000, norm_eps: float = 1e-5, use_gradient_checkpointing: bool = False, is_training: bool = False, q_chunk_size: int = 128, use_dcmha: bool = True, use_qk_norm: bool = False , window_size: Optional[int] = 256, window_type: Optional[str] = None, query_wise: bool = False, pad_token_id: Optional[int]= None, bos_token_id: int =1, eos_token_id: int =2, tie_word_embeddings: bool =False, **kwargs, ): self.block_size=block_size self.vocab_size=vocab_size self.n_layer=n_layer self.n_head=n_head self.dim=dim self.intermediate_size=intermediate_size self.n_local_heads=n_local_heads self.head_dim=head_dim self.rope_base=rope_base self.norm_eps=norm_eps self.use_gradient_checkpointing=use_gradient_checkpointing self.is_training=is_training self.q_chunk_size=q_chunk_size self.use_dcmha=use_dcmha self.use_qk_norm=use_qk_norm self.window_size=window_size self.window_type=window_type self.query_wise=query_wise # post init if self.n_local_heads == -1: self.n_local_heads = self.n_head if self.intermediate_size is None: hidden_dim = 4 * self.dim n_hidden = int(2 * hidden_dim / 3) self.intermediate_size = find_multiple(n_hidden, 256) self.head_dim = self.dim // self.n_head super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, )