File size: 1,868 Bytes
d2d3cd6 2e78bd0 d2d3cd6 e0bcfb5 d2d3cd6 2393e6a d2d3cd6 2393e6a d2d3cd6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
language:
- en
- vi
- multilingual
license: apache-2.0
tags:
- translation
datasets:
- ALT
metrics:
- sacrebleu
---
This is a finetuning of a MarianMT pretrained on English-Chinese. The target language pair is English-Vietnamese.
The first phase of training (mixed) is performed on a dataset containing both English-Chinese and English-Vietnamese sentences.
The second phase of training (pure) is performed on a dataset containing only English-Vietnamese sentences.
### Example
```
%%capture
!pip install transformers transformers[sentencepiece]
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
# Download the pretrained model for English-Vietnamese available on the hub
model = AutoModelForSeq2SeqLM.from_pretrained("CLAck/en-vi")
tokenizer = AutoTokenizer.from_pretrained("CLAck/en-vi")
# Download a tokenizer that can tokenize English since the model Tokenizer doesn't know anymore how to do it
# We used the one coming from the initial model
# This tokenizer is used to tokenize the input sentence
tokenizer_en = AutoTokenizer.from_pretrained('Helsinki-NLP/opus-mt-en-zh')
# These special tokens are needed to reproduce the original tokenizer
tokenizer_en.add_tokens(["<2zh>", "<2vi>"], special_tokens=True)
sentence = "The cat is on the table"
# This token is needed to identify the target language
input_sentence = "<2vi> " + sentence
translated = model.generate(**tokenizer_en(input_sentence, return_tensors="pt", padding=True))
output_sentence = [tokenizer.decode(t, skip_special_tokens=True) for t in translated]
```
### Training results
MIXED
| Epoch | Bleu |
|:-----:|:-------:|
| 1.0 | 26.2407 |
| 2.0 | 32.6016 |
| 3.0 | 35.4060 |
| 4.0 | 36.6737 |
| 5.0 | 37.3774 |
PURE
| Epoch | Bleu |
|:-----:|:-------:|
| 1.0 | 37.3169 |
| 2.0 | 37.4407 |
| 3.0 | 37.6696 |
| 4.0 | 37.8765 |
| 5.0 | 38.0105 |
|