--- base_model: defog/sqlcoder-7b-2 library_name: peft license: cc-by-sa-4.0 tags: - trl - sft - QLora - peft - SQL - causal-lm model-index: - name: sqlcoder-7b-2_FineTuned_PEFT_QLORA_adapter results: [] language: - en --- # sqlcoder-7b-2_FineTuned_QLORA_Adapter This model is a fine-tuned version of [defog/sqlcoder-7b-2](https://huggingface.co/defog/sqlcoder-7b-2) on 260 SQL examples (Task, Schema and Answer triplets) related to financial/banking domain. ## Intended uses & limitations MS SQL Server - SQL Query Generation ## Training This model was trained using the QLoRA method with the following configurations: - r = 64, - lora_alpha = 32 - lora_dropout = 0.05 - bias='none' - task_type='CAUSAL_LM' Quantization parameters: - load_in_4bit=True - bnb_4bit_quant_type="nf4" - bnb_4bit_compute_dtype=torch.bfloat16 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - num_epochs: 5 - mixed_precision_training: Native AMP ### Framework versions - PEFT 0.13.2 - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.2 - Tokenizers 0.19.1