[2024-02-01 14:20:07,768] [INFO] [real_accelerator.py:191:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2024-02-01 14:20:09,368] [WARNING] [runner.py:202:fetch_hostfile] Unable to find hostfile, will proceed with training with local resources only. [2024-02-01 14:20:09,369] [INFO] [runner.py:568:main] cmd = /home/lirenhao/anaconda3/envs/llama_factory/bin/python -u -m deepspeed.launcher.launch --world_info=eyJsb2NhbGhvc3QiOiBbMCwgMSwgMiwgM119 --master_addr=127.0.0.1 --master_port=2345 --enable_each_rank_log=None /home/lirenhao/projects/LLaMA-Factory/src/train_bash.py --deepspeed ds_config.json --stage sft --model_name_or_path /home/lirenhao/pretrained_models/internlm2-chat-7b/ --do_train --dataset cpsycoun --template intern2 --finetuning_type full --lora_target wqkv --output_dir /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9 --overwrite_cache --overwrite_output_dir --per_device_train_batch_size 4 --gradient_accumulation_steps 28 --lr_scheduler_type cosine --logging_steps 10 --save_steps 21 --learning_rate 1e-6 --num_train_epochs 9.0 --plot_loss --fp16 [2024-02-01 14:20:12,819] [INFO] [real_accelerator.py:191:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2024-02-01 14:20:14,435] [INFO] [launch.py:145:main] WORLD INFO DICT: {'localhost': [0, 1, 2, 3]} [2024-02-01 14:20:14,436] [INFO] [launch.py:151:main] nnodes=1, num_local_procs=4, node_rank=0 [2024-02-01 14:20:14,436] [INFO] [launch.py:162:main] global_rank_mapping=defaultdict(, {'localhost': [0, 1, 2, 3]}) [2024-02-01 14:20:14,436] [INFO] [launch.py:163:main] dist_world_size=4 [2024-02-01 14:20:14,436] [INFO] [launch.py:165:main] Setting CUDA_VISIBLE_DEVICES=0,1,2,3 [2024-02-01 14:20:19,797] [INFO] [real_accelerator.py:191:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2024-02-01 14:20:20,069] [INFO] [real_accelerator.py:191:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2024-02-01 14:20:20,128] [INFO] [real_accelerator.py:191:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2024-02-01 14:20:20,157] [INFO] [real_accelerator.py:191:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2024-02-01 14:20:22,839] [INFO] [comm.py:637:init_distributed] cdb=None [2024-02-01 14:20:23,347] [INFO] [comm.py:637:init_distributed] cdb=None [2024-02-01 14:20:23,364] [INFO] [comm.py:637:init_distributed] cdb=None [2024-02-01 14:20:23,375] [INFO] [comm.py:637:init_distributed] cdb=None [2024-02-01 14:20:23,376] [INFO] [comm.py:668:init_distributed] Initializing TorchBackend in DeepSpeed with backend nccl 02/01/2024 14:20:24 - INFO - llmtuner.hparams.parser - Process rank: 2, device: cuda:2, n_gpu: 1 distributed training: True, compute dtype: torch.float16 02/01/2024 14:20:24 - INFO - llmtuner.hparams.parser - Training/evaluation parameters Seq2SeqTrainingArguments( _n_gpu=1, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, bf16=False, bf16_full_eval=False, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=0, dataloader_persistent_workers=False, dataloader_pin_memory=True, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=ds_config.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=True, eval_accumulation_steps=None, eval_delay=0, eval_steps=None, evaluation_strategy=no, fp16=True, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, generation_config=None, generation_max_length=None, generation_num_beams=None, gradient_accumulation_steps=28, gradient_checkpointing=False, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=None, hub_private_repo=False, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=1e-06, length_column_name=length, load_best_model_at_end=False, local_rank=2, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/runs/Feb01_14-20-22_siat-a100-4-02, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=10, logging_strategy=steps, lr_scheduler_kwargs={}, lr_scheduler_type=cosine, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mp_parameters=, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=9.0, optim=adamw_torch, optim_args=None, output_dir=/home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9, overwrite_output_dir=True, past_index=-1, per_device_eval_batch_size=8, per_device_train_batch_size=4, predict_with_generate=False, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, ray_scope=last, remove_unused_columns=True, report_to=[], resume_from_checkpoint=None, run_name=/home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=21, save_strategy=steps, save_total_limit=None, seed=42, skip_memory_metrics=True, sortish_sampler=False, split_batches=False, tf32=None, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_mps_device=False, warmup_ratio=0.0, warmup_steps=0, weight_decay=0.0, ) 02/01/2024 14:20:24 - INFO - llmtuner.hparams.parser - Process rank: 0, device: cuda:0, n_gpu: 1 distributed training: True, compute dtype: torch.float16 02/01/2024 14:20:24 - INFO - llmtuner.hparams.parser - Training/evaluation parameters Seq2SeqTrainingArguments( _n_gpu=1, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, bf16=False, bf16_full_eval=False, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=0, dataloader_persistent_workers=False, dataloader_pin_memory=True, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=ds_config.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=True, eval_accumulation_steps=None, eval_delay=0, eval_steps=None, evaluation_strategy=no, fp16=True, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, generation_config=None, generation_max_length=None, generation_num_beams=None, gradient_accumulation_steps=28, gradient_checkpointing=False, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=None, hub_private_repo=False, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=1e-06, length_column_name=length, load_best_model_at_end=False, local_rank=0, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/runs/Feb01_14-20-23_siat-a100-4-02, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=10, logging_strategy=steps, lr_scheduler_kwargs={}, lr_scheduler_type=cosine, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mp_parameters=, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=9.0, optim=adamw_torch, optim_args=None, output_dir=/home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9, overwrite_output_dir=True, past_index=-1, per_device_eval_batch_size=8, per_device_train_batch_size=4, predict_with_generate=False, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, ray_scope=last, remove_unused_columns=True, report_to=[], resume_from_checkpoint=None, run_name=/home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=21, save_strategy=steps, save_total_limit=None, seed=42, skip_memory_metrics=True, sortish_sampler=False, split_batches=False, tf32=None, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_mps_device=False, warmup_ratio=0.0, warmup_steps=0, weight_decay=0.0, ) [INFO|tokenization_utils_base.py:2025] 2024-02-01 14:20:24,513 >> loading file ./tokenizer.model [INFO|tokenization_utils_base.py:2025] 2024-02-01 14:20:24,513 >> loading file added_tokens.json [INFO|tokenization_utils_base.py:2025] 2024-02-01 14:20:24,513 >> loading file special_tokens_map.json [INFO|tokenization_utils_base.py:2025] 2024-02-01 14:20:24,513 >> loading file tokenizer_config.json [INFO|tokenization_utils_base.py:2025] 2024-02-01 14:20:24,513 >> loading file tokenizer.json [INFO|configuration_utils.py:727] 2024-02-01 14:20:24,850 >> loading configuration file /home/lirenhao/pretrained_models/internlm2-chat-7b/config.json [INFO|configuration_utils.py:727] 2024-02-01 14:20:24,852 >> loading configuration file /home/lirenhao/pretrained_models/internlm2-chat-7b/config.json [INFO|configuration_utils.py:792] 2024-02-01 14:20:24,854 >> Model config InternLM2Config { "_name_or_path": "/home/lirenhao/pretrained_models/internlm2-chat-7b/", "architectures": [ "InternLM2ForCausalLM" ], "attn_implementation": "eager", "auto_map": { "AutoConfig": "configuration_internlm2.InternLM2Config", "AutoModel": "modeling_internlm2.InternLM2ForCausalLM", "AutoModelForCausalLM": "modeling_internlm2.InternLM2ForCausalLM" }, "bias": false, "bos_token_id": 1, "eos_token_id": 2, "hidden_act": "silu", "hidden_size": 4096, "initializer_range": 0.02, "intermediate_size": 14336, "max_position_embeddings": 32768, "model_type": "internlm2", "num_attention_heads": 32, "num_hidden_layers": 32, "num_key_value_heads": 8, "pad_token_id": 2, "rms_norm_eps": 1e-05, "rope_scaling": { "factor": 2.0, "type": "dynamic" }, "rope_theta": 1000000, "tie_word_embeddings": false, "torch_dtype": "float16", "transformers_version": "4.37.1", "use_cache": true, "vocab_size": 92544 } [INFO|modeling_utils.py:3475] 2024-02-01 14:20:24,903 >> loading weights file /home/lirenhao/pretrained_models/internlm2-chat-7b/pytorch_model.bin.index.json [INFO|modeling_utils.py:1428] 2024-02-01 14:20:24,903 >> Instantiating InternLM2ForCausalLM model under default dtype torch.float16. [INFO|configuration_utils.py:826] 2024-02-01 14:20:24,905 >> Generate config GenerationConfig { "bos_token_id": 1, "eos_token_id": 2, "pad_token_id": 2 } 02/01/2024 14:20:24 - INFO - llmtuner.hparams.parser - Process rank: 1, device: cuda:1, n_gpu: 1 distributed training: True, compute dtype: torch.float16 02/01/2024 14:20:24 - INFO - llmtuner.hparams.parser - Training/evaluation parameters Seq2SeqTrainingArguments( _n_gpu=1, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, bf16=False, bf16_full_eval=False, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=0, dataloader_persistent_workers=False, dataloader_pin_memory=True, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=ds_config.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=True, eval_accumulation_steps=None, eval_delay=0, eval_steps=None, evaluation_strategy=no, fp16=True, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, generation_config=None, generation_max_length=None, generation_num_beams=None, gradient_accumulation_steps=28, gradient_checkpointing=False, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=None, hub_private_repo=False, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=1e-06, length_column_name=length, load_best_model_at_end=False, local_rank=1, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/runs/Feb01_14-20-23_siat-a100-4-02, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=10, logging_strategy=steps, lr_scheduler_kwargs={}, lr_scheduler_type=cosine, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mp_parameters=, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=9.0, optim=adamw_torch, optim_args=None, output_dir=/home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9, overwrite_output_dir=True, past_index=-1, per_device_eval_batch_size=8, per_device_train_batch_size=4, predict_with_generate=False, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, ray_scope=last, remove_unused_columns=True, report_to=[], resume_from_checkpoint=None, run_name=/home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=21, save_strategy=steps, save_total_limit=None, seed=42, skip_memory_metrics=True, sortish_sampler=False, split_batches=False, tf32=None, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_mps_device=False, warmup_ratio=0.0, warmup_steps=0, weight_decay=0.0, ) 02/01/2024 14:20:24 - INFO - llmtuner.hparams.parser - Process rank: 3, device: cuda:3, n_gpu: 1 distributed training: True, compute dtype: torch.float16 02/01/2024 14:20:24 - INFO - llmtuner.hparams.parser - Training/evaluation parameters Seq2SeqTrainingArguments( _n_gpu=1, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, bf16=False, bf16_full_eval=False, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=0, dataloader_persistent_workers=False, dataloader_pin_memory=True, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=ds_config.json, disable_tqdm=False, dispatch_batches=None, do_eval=False, do_predict=False, do_train=True, eval_accumulation_steps=None, eval_delay=0, eval_steps=None, evaluation_strategy=no, fp16=True, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, generation_config=None, generation_max_length=None, generation_num_beams=None, gradient_accumulation_steps=28, gradient_checkpointing=False, gradient_checkpointing_kwargs=None, greater_is_better=None, group_by_length=False, half_precision_backend=auto, hub_always_push=False, hub_model_id=None, hub_private_repo=False, hub_strategy=every_save, hub_token=, ignore_data_skip=False, include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=1e-06, length_column_name=length, load_best_model_at_end=False, local_rank=3, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=/home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/runs/Feb01_14-20-23_siat-a100-4-02, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=10, logging_strategy=steps, lr_scheduler_kwargs={}, lr_scheduler_type=cosine, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=None, mp_parameters=, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=9.0, optim=adamw_torch, optim_args=None, output_dir=/home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9, overwrite_output_dir=True, past_index=-1, per_device_eval_batch_size=8, per_device_train_batch_size=4, predict_with_generate=False, prediction_loss_only=False, push_to_hub=False, push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=, ray_scope=last, remove_unused_columns=True, report_to=[], resume_from_checkpoint=None, run_name=/home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=21, save_strategy=steps, save_total_limit=None, seed=42, skip_memory_metrics=True, sortish_sampler=False, split_batches=False, tf32=None, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_mps_device=False, warmup_ratio=0.0, warmup_steps=0, weight_decay=0.0, ) Loading checkpoint shards: 0%| | 0/8 [00:00> All model checkpoint weights were used when initializing InternLM2ForCausalLM. [INFO|modeling_utils.py:4360] 2024-02-01 14:20:36,242 >> All the weights of InternLM2ForCausalLM were initialized from the model checkpoint at /home/lirenhao/pretrained_models/internlm2-chat-7b/. If your task is similar to the task the model of the checkpoint was trained on, you can already use InternLM2ForCausalLM for predictions without further training. [INFO|configuration_utils.py:779] 2024-02-01 14:20:36,247 >> loading configuration file /home/lirenhao/pretrained_models/internlm2-chat-7b/generation_config.json [INFO|configuration_utils.py:826] 2024-02-01 14:20:36,248 >> Generate config GenerationConfig { "bos_token_id": 1, "eos_token_id": 2, "pad_token_id": 2 } 02/01/2024 14:20:36 - INFO - llmtuner.model.patcher - Gradient checkpointing enabled. 02/01/2024 14:20:36 - INFO - llmtuner.model.adapter - Fine-tuning method: Full Loading checkpoint shards: 88%|████████▊ | 7/8 [00:01<00:00, 3.43it/s] Loading checkpoint shards: 100%|██████████| 8/8 [00:02<00:00, 3.42it/s] Loading checkpoint shards: 100%|██████████| 8/8 [00:02<00:00, 3.50it/s] 02/01/2024 14:20:36 - INFO - llmtuner.model.patcher - Gradient checkpointing enabled. 02/01/2024 14:20:36 - INFO - llmtuner.model.adapter - Fine-tuning method: Full 02/01/2024 14:20:47 - INFO - llmtuner.model.loader - trainable params: 7737708544 || all params: 7737708544 || trainable%: 100.0000 02/01/2024 14:20:48 - INFO - llmtuner.data.template - Add <|im_end|> to stop words. 02/01/2024 14:20:48 - INFO - llmtuner.model.loader - trainable params: 7737708544 || all params: 7737708544 || trainable%: 100.0000 02/01/2024 14:20:48 - INFO - llmtuner.model.loader - trainable params: 7737708544 || all params: 7737708544 || trainable%: 100.0000 02/01/2024 14:20:49 - INFO - llmtuner.data.template - Add <|im_end|> to stop words. 02/01/2024 14:20:49 - WARNING - llmtuner.data.utils - Checksum failed: missing SHA-1 hash value in dataset_info.json. 02/01/2024 14:20:49 - INFO - llmtuner.data.template - Add <|im_end|> to stop words. 02/01/2024 14:20:49 - INFO - llmtuner.model.loader - trainable params: 7737708544 || all params: 7737708544 || trainable%: 100.0000 02/01/2024 14:20:49 - INFO - llmtuner.data.template - Add <|im_end|> to stop words. Using custom data configuration default-7bf826ddf73c2f44 Loading Dataset Infos from /home/lirenhao/anaconda3/envs/llama_factory/lib/python3.10/site-packages/datasets/packaged_modules/json Overwrite dataset info from restored data version if exists. Loading Dataset info from /home/lirenhao/.cache/huggingface/datasets/json/default-7bf826ddf73c2f44/0.0.0/8bb11242116d547c741b2e8a1f18598ffdd40a1d4f2a2872c7a28b697434bc96 Found cached dataset json (/home/lirenhao/.cache/huggingface/datasets/json/default-7bf826ddf73c2f44/0.0.0/8bb11242116d547c741b2e8a1f18598ffdd40a1d4f2a2872c7a28b697434bc96) Loading Dataset info from /home/lirenhao/.cache/huggingface/datasets/json/default-7bf826ddf73c2f44/0.0.0/8bb11242116d547c741b2e8a1f18598ffdd40a1d4f2a2872c7a28b697434bc96 Converting format of dataset: 0%| | 0/3134 [00:00 <|im_start|> system You are an AI assistant whose name is InternLM (书生·浦语). - InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless. - InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.<|im_end|> <|im_start|> user 心理咨询师,我觉得我的胸闷症状越来越严重了,这让我很害怕。<|im_end|> <|im_start|> assistant 我能理解你的感受,首先我们要明确你的症状并不是生理问题,而是心理问题。我们可以尝试找出引发你胸闷的心理原因。 <|im_start|> user 可是我一直都在找原因,却找不到答案。<|im_end|> <|im_start|> assistant 不要着急,我们会一步一步地解决这个问题。你能告诉我,你生活中的压力和困扰吗? <|im_start|> user 我觉得我的压力主要来自于家庭,我和丈夫关系不好,他总是忙于工作,很少关心我。而且我担心我的孩子,怕他们出了什么意外。<|im_end|> <|im_start|> assistant 你能详细说说吗?比如,你和丈夫之间的问题具体是什么? <|im_start|> user 我们经常因为一些小事争吵,他总是忽略我的感受。我感到很孤独,就像被困在一个牢笼里。<|im_end|> <|im_start|> assistant 这种感觉让你想起了什么?或者,你觉得自己在这段婚姻中失去了什么? <|im_start|> user 让我想想……我觉得我失去了一个温馨的家,一个关爱我的丈夫。我一直在努力维持这段婚姻,但现实却让我失望。<|im_end|> <|im_start|> assistant 你能体会到这种失望带来的情绪吗?比如,伤心、愤怒、失望? <|im_start|> user 是的,我经常会感到伤心和失望。有时候,我甚至会怀疑自己的人生是不是选错了路。<|im_end|> <|im_start|> assistant 这些情绪会影响你的日常生活吗?比如,你的睡眠、饮食、工作? <|im_start|> user 肯定的。我最近睡眠很差,总是做噩梦。而且我吃得也不好,体重一直在下降。<|im_end|> <|im_start|> assistant 了解到这些,我想告诉你,你的症状是可以改善的。我们可以通过心理治疗,帮助你走出这段困境。 <|im_start|> user 真的吗?那我要如何做呢?<|im_end|> <|im_start|> assistant 首先,我们要了解你的情绪,学会面对和接纳它们。然后,我们会教你怎么表达自己的需求,让你和丈夫、孩子之间的关系得到改善。 <|im_start|> user 听起来很有道理。那我们从哪里开始呢?<|im_end|> <|im_start|> assistant 从了解你的情绪开始。试着回想一下,最近一次感到伤心或者失望的时候,是什么原因导致的? label_ids: [-100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 73406, 68865, 68364, 69377, 60353, 86839, 70004, 68364, 69516, 69461, 71677, 68287, 60353, 69029, 68831, 68287, 60355, 68931, 69702, 75326, 71838, 60403, 61860, 62703, 77797, 68540, 60355, 2, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 91781, 60353, 73161, 80540, 60415, 82098, 60355, 72010, 71404, 60353, 60403, 76153, 68912, 60381, 74112, 61076, 60504, 2, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 72010, 69030, 71711, 61076, 60504, 68522, 60353, 86004, 71645, 68629, 68804, 68592, 69095, 60504, 2, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 82967, 69068, 87160, 68261, 60504, 68319, 60353, 60403, 70868, 69962, 60871, 69893, 60366, 73603, 68261, 60504, 2, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 72010, 82120, 68381, 72415, 70860, 69209, 61076, 60504, 68522, 60353, 73880, 60359, 75493, 60359, 72415, 60504, 2, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 68374, 69209, 73175, 68364, 77514, 61076, 60504, 68522, 60353, 68364, 70033, 60359, 69441, 60359, 68273, 60504, 2, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 76273, 68374, 60353, 69060, 71958, 60353, 68364, 69516, 70848, 69715, 60354, 60355, 81425, 68831, 68637, 60353, 80698, 74131, 73382, 79309, 60355, 2, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 68400, 60353, 69897, 68505, 68364, 69209, 60353, 68908, 69116, 60381, 82567, 69290, 60355, 68265, 60353, 73161, 72826, 68288, 69418, 68304, 68747, 60353, 69068, 60381, 71645, 60359, 68303, 82409, 68615, 69715, 60355, 2, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 60577, 68505, 68364, 69209, 68301, 60355, 75630, 82261, 68300, 60353, 68848, 68427, 69836, 73880, 68319, 72415, 68269, 60353, 69095, 68540, 74465, 60504, 2] labels: 我能理解你的感受,首先我们要明确你的症状并不是生理问题,而是心理问题。我们可以尝试找出引发你胸闷的心理原因。 不要着急,我们会一步一步地解决这个问题。你能告诉我,你生活中的压力和困扰吗? 你能详细说说吗?比如,你和丈夫之间的问题具体是什么? 这种感觉让你想起了什么?或者,你觉得自己在这段婚姻中失去了什么? 你能体会到这种失望带来的情绪吗?比如,伤心、愤怒、失望? 这些情绪会影响你的日常生活吗?比如,你的睡眠、饮食、工作? 了解到这些,我想告诉你,你的症状是可以改善的。我们可以通过心理治疗,帮助你走出这段困境。 首先,我们要了解你的情绪,学会面对和接纳它们。然后,我们会教你怎么表达自己的需求,让你和丈夫、孩子之间的关系得到改善。 从了解你的情绪开始。试着回想一下,最近一次感到伤心或者失望的时候,是什么原因导致的? [INFO|training_args.py:1828] 2024-02-01 14:21:08,098 >> PyTorch: setting up devices Running tokenizer on dataset: 0%| | 0/3134 [00:00> Using auto half precision backend [2024-02-01 14:21:08,351] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed info: version=0.13.1, git-hash=unknown, git-branch=unknown Running tokenizer on dataset: 32%|███▏ | 1000/3134 [00:06<00:13, 162.30 examples/s] Running tokenizer on dataset: 32%|███▏ | 1000/3134 [00:06<00:13, 161.85 examples/s] Running tokenizer on dataset: 32%|███▏ | 1000/3134 [00:06<00:13, 161.58 examples/s] Running tokenizer on dataset: 64%|██████▍ | 2000/3134 [00:11<00:06, 172.50 examples/s] Running tokenizer on dataset: 64%|██████▍ | 2000/3134 [00:12<00:07, 160.87 examples/s] Running tokenizer on dataset: 64%|██████▍ | 2000/3134 [00:12<00:07, 160.52 examples/s] Running tokenizer on dataset: 96%|█████████▌| 3000/3134 [00:15<00:00, 213.06 examples/s] Running tokenizer on dataset: 100%|██████████| 3134/3134 [00:15<00:00, 217.65 examples/s] Running tokenizer on dataset: 100%|██████████| 3134/3134 [00:15<00:00, 201.27 examples/s] /home/lirenhao/anaconda3/envs/llama_factory/lib/python3.10/site-packages/transformers/training_args.py:1741: FutureWarning: `--push_to_hub_token` is deprecated and will be removed in version 5 of 🤗 Transformers. Use `--hub_token` instead. warnings.warn( Running tokenizer on dataset: 96%|█████████▌| 3000/3134 [00:18<00:00, 159.71 examples/s] Running tokenizer on dataset: 96%|█████████▌| 3000/3134 [00:18<00:00, 159.56 examples/s] Running tokenizer on dataset: 100%|██████████| 3134/3134 [00:19<00:00, 159.07 examples/s] Running tokenizer on dataset: 100%|██████████| 3134/3134 [00:19<00:00, 159.20 examples/s] Running tokenizer on dataset: 100%|██████████| 3134/3134 [00:19<00:00, 159.55 examples/s] Running tokenizer on dataset: 100%|██████████| 3134/3134 [00:19<00:00, 159.49 examples/s] /home/lirenhao/anaconda3/envs/llama_factory/lib/python3.10/site-packages/transformers/training_args.py:1741: FutureWarning: `--push_to_hub_token` is deprecated and will be removed in version 5 of 🤗 Transformers. Use `--hub_token` instead. warnings.warn( /home/lirenhao/anaconda3/envs/llama_factory/lib/python3.10/site-packages/transformers/training_args.py:1741: FutureWarning: `--push_to_hub_token` is deprecated and will be removed in version 5 of 🤗 Transformers. Use `--hub_token` instead. warnings.warn( [2024-02-01 14:21:41,776] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed Flops Profiler Enabled: False [2024-02-01 14:21:41,778] [INFO] [logging.py:96:log_dist] [Rank 0] Using client Optimizer as basic optimizer [2024-02-01 14:21:41,778] [INFO] [logging.py:96:log_dist] [Rank 0] Removing param_group that has no 'params' in the basic Optimizer [2024-02-01 14:21:41,794] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed Basic Optimizer = AdamW [2024-02-01 14:21:41,794] [INFO] [utils.py:56:is_zero_supported_optimizer] Checking ZeRO support for optimizer=AdamW type= [2024-02-01 14:21:41,794] [INFO] [logging.py:96:log_dist] [Rank 0] Creating torch.float16 ZeRO stage 2 optimizer [2024-02-01 14:21:41,795] [INFO] [stage_1_and_2.py:143:__init__] Reduce bucket size 500000000 [2024-02-01 14:21:41,795] [INFO] [stage_1_and_2.py:144:__init__] Allgather bucket size 500000000 [2024-02-01 14:21:41,795] [INFO] [stage_1_and_2.py:145:__init__] CPU Offload: False [2024-02-01 14:21:41,795] [INFO] [stage_1_and_2.py:146:__init__] Round robin gradient partitioning: False [2024-02-01 14:22:01,253] [INFO] [utils.py:791:see_memory_usage] Before initializing optimizer states [2024-02-01 14:22:01,254] [INFO] [utils.py:792:see_memory_usage] MA 22.12 GB Max_MA 25.72 GB CA 25.85 GB Max_CA 26 GB [2024-02-01 14:22:01,254] [INFO] [utils.py:799:see_memory_usage] CPU Virtual Memory: used = 119.45 GB, percent = 12.4% [2024-02-01 14:22:01,614] [INFO] [utils.py:791:see_memory_usage] After initializing optimizer states [2024-02-01 14:22:01,615] [INFO] [utils.py:792:see_memory_usage] MA 36.53 GB Max_MA 50.95 GB CA 54.68 GB Max_CA 55 GB [2024-02-01 14:22:01,615] [INFO] [utils.py:799:see_memory_usage] CPU Virtual Memory: used = 109.91 GB, percent = 11.4% [2024-02-01 14:22:01,615] [INFO] [stage_1_and_2.py:533:__init__] optimizer state initialized [2024-02-01 14:22:01,876] [INFO] [utils.py:791:see_memory_usage] After initializing ZeRO optimizer [2024-02-01 14:22:01,877] [INFO] [utils.py:792:see_memory_usage] MA 36.53 GB Max_MA 36.53 GB CA 54.68 GB Max_CA 55 GB [2024-02-01 14:22:01,878] [INFO] [utils.py:799:see_memory_usage] CPU Virtual Memory: used = 101.72 GB, percent = 10.5% [2024-02-01 14:22:01,881] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed Final Optimizer = AdamW [2024-02-01 14:22:01,881] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed using client LR scheduler [2024-02-01 14:22:01,881] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed LR Scheduler = None [2024-02-01 14:22:01,881] [INFO] [logging.py:96:log_dist] [Rank 0] step=0, skipped=0, lr=[1e-06], mom=[(0.9, 0.999)] [2024-02-01 14:22:01,883] [INFO] [config.py:984:print] DeepSpeedEngine configuration: [2024-02-01 14:22:01,883] [INFO] [config.py:988:print] activation_checkpointing_config { "partition_activations": false, "contiguous_memory_optimization": false, "cpu_checkpointing": false, "number_checkpoints": null, "synchronize_checkpoint_boundary": false, "profile": false } [2024-02-01 14:22:01,883] [INFO] [config.py:988:print] aio_config ................... {'block_size': 1048576, 'queue_depth': 8, 'thread_count': 1, 'single_submit': False, 'overlap_events': True} [2024-02-01 14:22:01,883] [INFO] [config.py:988:print] amp_enabled .................. False [2024-02-01 14:22:01,883] [INFO] [config.py:988:print] amp_params ................... False [2024-02-01 14:22:01,884] [INFO] [config.py:988:print] autotuning_config ............ { "enabled": false, "start_step": null, "end_step": null, "metric_path": null, "arg_mappings": null, "metric": "throughput", "model_info": null, "results_dir": "autotuning_results", "exps_dir": "autotuning_exps", "overwrite": true, "fast": true, "start_profile_step": 3, "end_profile_step": 5, "tuner_type": "gridsearch", "tuner_early_stopping": 5, "tuner_num_trials": 50, "model_info_path": null, "mp_size": 1, "max_train_batch_size": null, "min_train_batch_size": 1, "max_train_micro_batch_size_per_gpu": 1.024000e+03, "min_train_micro_batch_size_per_gpu": 1, "num_tuning_micro_batch_sizes": 3 } [2024-02-01 14:22:01,884] [INFO] [config.py:988:print] bfloat16_enabled ............. False [2024-02-01 14:22:01,884] [INFO] [config.py:988:print] checkpoint_parallel_write_pipeline False [2024-02-01 14:22:01,884] [INFO] [config.py:988:print] checkpoint_tag_validation_enabled True [2024-02-01 14:22:01,884] [INFO] [config.py:988:print] checkpoint_tag_validation_fail False [2024-02-01 14:22:01,884] [INFO] [config.py:988:print] comms_config ................. [2024-02-01 14:22:01,884] [INFO] [config.py:988:print] communication_data_type ...... None [2024-02-01 14:22:01,884] [INFO] [config.py:988:print] compression_config ........... {'weight_quantization': {'shared_parameters': {'enabled': False, 'quantizer_kernel': False, 'schedule_offset': 0, 'quantize_groups': 1, 'quantize_verbose': False, 'quantization_type': 'symmetric', 'quantize_weight_in_forward': False, 'rounding': 'nearest', 'fp16_mixed_quantize': False, 'quantize_change_ratio': 0.001}, 'different_groups': {}}, 'activation_quantization': {'shared_parameters': {'enabled': False, 'quantization_type': 'symmetric', 'range_calibration': 'dynamic', 'schedule_offset': 1000}, 'different_groups': {}}, 'sparse_pruning': {'shared_parameters': {'enabled': False, 'method': 'l1', 'schedule_offset': 1000}, 'different_groups': {}}, 'row_pruning': {'shared_parameters': {'enabled': False, 'method': 'l1', 'schedule_offset': 1000}, 'different_groups': {}}, 'head_pruning': {'shared_parameters': {'enabled': False, 'method': 'topk', 'schedule_offset': 1000}, 'different_groups': {}}, 'channel_pruning': {'shared_parameters': {'enabled': False, 'method': 'l1', 'schedule_offset': 1000}, 'different_groups': {}}, 'layer_reduction': {'enabled': False}} [2024-02-01 14:22:01,884] [INFO] [config.py:988:print] curriculum_enabled_legacy .... False [2024-02-01 14:22:01,884] [INFO] [config.py:988:print] curriculum_params_legacy ..... False [2024-02-01 14:22:01,884] [INFO] [config.py:988:print] data_efficiency_config ....... {'enabled': False, 'seed': 1234, 'data_sampling': {'enabled': False, 'num_epochs': 1000, 'num_workers': 0, 'curriculum_learning': {'enabled': False}}, 'data_routing': {'enabled': False, 'random_ltd': {'enabled': False, 'layer_token_lr_schedule': {'enabled': False}}}} [2024-02-01 14:22:01,884] [INFO] [config.py:988:print] data_efficiency_enabled ...... False [2024-02-01 14:22:01,884] [INFO] [config.py:988:print] dataloader_drop_last ......... False [2024-02-01 14:22:01,884] [INFO] [config.py:988:print] disable_allgather ............ False [2024-02-01 14:22:01,884] [INFO] [config.py:988:print] dump_state ................... False [2024-02-01 14:22:01,884] [INFO] [config.py:988:print] dynamic_loss_scale_args ...... {'init_scale': 65536, 'scale_window': 1000, 'delayed_shift': 2, 'consecutive_hysteresis': False, 'min_scale': 1} [2024-02-01 14:22:01,884] [INFO] [config.py:988:print] eigenvalue_enabled ........... False [2024-02-01 14:22:01,884] [INFO] [config.py:988:print] eigenvalue_gas_boundary_resolution 1 [2024-02-01 14:22:01,884] [INFO] [config.py:988:print] eigenvalue_layer_name ........ bert.encoder.layer [2024-02-01 14:22:01,884] [INFO] [config.py:988:print] eigenvalue_layer_num ......... 0 [2024-02-01 14:22:01,884] [INFO] [config.py:988:print] eigenvalue_max_iter .......... 100 [2024-02-01 14:22:01,884] [INFO] [config.py:988:print] eigenvalue_stability ......... 1e-06 [2024-02-01 14:22:01,884] [INFO] [config.py:988:print] eigenvalue_tol ............... 0.01 [2024-02-01 14:22:01,884] [INFO] [config.py:988:print] eigenvalue_verbose ........... False [2024-02-01 14:22:01,885] [INFO] [config.py:988:print] elasticity_enabled ........... False [2024-02-01 14:22:01,885] [INFO] [config.py:988:print] flops_profiler_config ........ { "enabled": false, "recompute_fwd_factor": 0.0, "profile_step": 1, "module_depth": -1, "top_modules": 1, "detailed": true, "output_file": null } [2024-02-01 14:22:01,885] [INFO] [config.py:988:print] fp16_auto_cast ............... False [2024-02-01 14:22:01,885] [INFO] [config.py:988:print] fp16_enabled ................. True [2024-02-01 14:22:01,885] [INFO] [config.py:988:print] fp16_master_weights_and_gradients False [2024-02-01 14:22:01,885] [INFO] [config.py:988:print] global_rank .................. 0 [2024-02-01 14:22:01,885] [INFO] [config.py:988:print] grad_accum_dtype ............. None [2024-02-01 14:22:01,885] [INFO] [config.py:988:print] gradient_accumulation_steps .. 28 [2024-02-01 14:22:01,885] [INFO] [config.py:988:print] gradient_clipping ............ 1.0 [2024-02-01 14:22:01,885] [INFO] [config.py:988:print] gradient_predivide_factor .... 1.0 [2024-02-01 14:22:01,885] [INFO] [config.py:988:print] graph_harvesting ............. False [2024-02-01 14:22:01,885] [INFO] [config.py:988:print] hybrid_engine ................ enabled=False max_out_tokens=512 inference_tp_size=1 release_inference_cache=False pin_parameters=True tp_gather_partition_size=8 [2024-02-01 14:22:01,885] [INFO] [config.py:988:print] initial_dynamic_scale ........ 65536 [2024-02-01 14:22:01,885] [INFO] [config.py:988:print] load_universal_checkpoint .... False [2024-02-01 14:22:01,885] [INFO] [config.py:988:print] loss_scale ................... 0 [2024-02-01 14:22:01,885] [INFO] [config.py:988:print] memory_breakdown ............. False [2024-02-01 14:22:01,885] [INFO] [config.py:988:print] mics_hierarchial_params_gather False [2024-02-01 14:22:01,885] [INFO] [config.py:988:print] mics_shard_size .............. -1 [2024-02-01 14:22:01,885] [INFO] [config.py:988:print] monitor_config ............... tensorboard=TensorBoardConfig(enabled=False, output_path='', job_name='DeepSpeedJobName') wandb=WandbConfig(enabled=False, group=None, team=None, project='deepspeed') csv_monitor=CSVConfig(enabled=False, output_path='', job_name='DeepSpeedJobName') enabled=False [2024-02-01 14:22:01,885] [INFO] [config.py:988:print] nebula_config ................ { "enabled": false, "persistent_storage_path": null, "persistent_time_interval": 100, "num_of_version_in_retention": 2, "enable_nebula_load": true, "load_path": null } [2024-02-01 14:22:01,885] [INFO] [config.py:988:print] optimizer_legacy_fusion ...... False [2024-02-01 14:22:01,885] [INFO] [config.py:988:print] optimizer_name ............... None [2024-02-01 14:22:01,886] [INFO] [config.py:988:print] optimizer_params ............. None [2024-02-01 14:22:01,886] [INFO] [config.py:988:print] pipeline ..................... {'stages': 'auto', 'partition': 'best', 'seed_layers': False, 'activation_checkpoint_interval': 0, 'pipe_partitioned': True, 'grad_partitioned': True} [2024-02-01 14:22:01,886] [INFO] [config.py:988:print] pld_enabled .................. False [2024-02-01 14:22:01,886] [INFO] [config.py:988:print] pld_params ................... False [2024-02-01 14:22:01,886] [INFO] [config.py:988:print] prescale_gradients ........... False [2024-02-01 14:22:01,886] [INFO] [config.py:988:print] scheduler_name ............... None [2024-02-01 14:22:01,886] [INFO] [config.py:988:print] scheduler_params ............. None [2024-02-01 14:22:01,886] [INFO] [config.py:988:print] seq_parallel_communication_data_type torch.float32 [2024-02-01 14:22:01,886] [INFO] [config.py:988:print] sparse_attention ............. None [2024-02-01 14:22:01,886] [INFO] [config.py:988:print] sparse_gradients_enabled ..... False [2024-02-01 14:22:01,886] [INFO] [config.py:988:print] steps_per_print .............. inf [2024-02-01 14:22:01,886] [INFO] [config.py:988:print] train_batch_size ............. 448 [2024-02-01 14:22:01,886] [INFO] [config.py:988:print] train_micro_batch_size_per_gpu 4 [2024-02-01 14:22:01,886] [INFO] [config.py:988:print] use_data_before_expert_parallel_ False [2024-02-01 14:22:01,886] [INFO] [config.py:988:print] use_node_local_storage ....... False [2024-02-01 14:22:01,886] [INFO] [config.py:988:print] wall_clock_breakdown ......... False [2024-02-01 14:22:01,886] [INFO] [config.py:988:print] weight_quantization_config ... None [2024-02-01 14:22:01,886] [INFO] [config.py:988:print] world_size ................... 4 [2024-02-01 14:22:01,886] [INFO] [config.py:988:print] zero_allow_untested_optimizer True [2024-02-01 14:22:01,886] [INFO] [config.py:988:print] zero_config .................. stage=2 contiguous_gradients=True reduce_scatter=True reduce_bucket_size=500000000 use_multi_rank_bucket_allreduce=True allgather_partitions=True allgather_bucket_size=500000000 overlap_comm=False load_from_fp32_weights=True elastic_checkpoint=False offload_param=None offload_optimizer=None sub_group_size=1,000,000,000 cpu_offload_param=None cpu_offload_use_pin_memory=None cpu_offload=None prefetch_bucket_size=50,000,000 param_persistence_threshold=100,000 model_persistence_threshold=sys.maxsize max_live_parameters=1,000,000,000 max_reuse_distance=1,000,000,000 gather_16bit_weights_on_model_save=False stage3_gather_fp16_weights_on_model_save=False ignore_unused_parameters=True legacy_stage1=False round_robin_gradients=False zero_hpz_partition_size=1 zero_quantized_weights=False zero_quantized_nontrainable_weights=False zero_quantized_gradients=False mics_shard_size=-1 mics_hierarchical_params_gather=False memory_efficient_linear=True pipeline_loading_checkpoint=False override_module_apply=True [2024-02-01 14:22:01,886] [INFO] [config.py:988:print] zero_enabled ................. True [2024-02-01 14:22:01,886] [INFO] [config.py:988:print] zero_force_ds_cpu_optimizer .. True [2024-02-01 14:22:01,886] [INFO] [config.py:988:print] zero_optimization_stage ...... 2 [2024-02-01 14:22:01,887] [INFO] [config.py:974:print_user_config] json = { "train_batch_size": 448, "train_micro_batch_size_per_gpu": 4, "gradient_accumulation_steps": 28, "gradient_clipping": 1.0, "zero_allow_untested_optimizer": true, "fp16": { "enabled": true, "loss_scale": 0, "initial_scale_power": 16, "loss_scale_window": 1000, "hysteresis": 2, "min_loss_scale": 1 }, "zero_optimization": { "stage": 2, "allgather_partitions": true, "allgather_bucket_size": 5.000000e+08, "reduce_scatter": true, "reduce_bucket_size": 5.000000e+08, "overlap_comm": false, "contiguous_gradients": true }, "steps_per_print": inf, "bf16": { "enabled": false } } [INFO|trainer.py:1721] 2024-02-01 14:22:01,887 >> ***** Running training ***** [INFO|trainer.py:1722] 2024-02-01 14:22:01,887 >> Num examples = 3,134 [INFO|trainer.py:1723] 2024-02-01 14:22:01,887 >> Num Epochs = 9 [INFO|trainer.py:1724] 2024-02-01 14:22:01,887 >> Instantaneous batch size per device = 4 [INFO|trainer.py:1727] 2024-02-01 14:22:01,887 >> Total train batch size (w. parallel, distributed & accumulation) = 448 [INFO|trainer.py:1728] 2024-02-01 14:22:01,887 >> Gradient Accumulation steps = 28 [INFO|trainer.py:1729] 2024-02-01 14:22:01,887 >> Total optimization steps = 63 [INFO|trainer.py:1730] 2024-02-01 14:22:01,889 >> Number of trainable parameters = 7,737,708,544 0%| | 0/63 [00:00> Saving model checkpoint to /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-21 [INFO|configuration_utils.py:473] 2024-02-01 14:36:12,902 >> Configuration saved in /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-21/config.json [INFO|configuration_utils.py:594] 2024-02-01 14:36:12,903 >> Configuration saved in /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-21/generation_config.json [INFO|modeling_utils.py:2503] 2024-02-01 14:36:40,422 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 4 checkpoint shards. You can find where each parameters has been saved in the index located at /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-21/model.safetensors.index.json. [INFO|tokenization_utils_base.py:2433] 2024-02-01 14:36:40,424 >> tokenizer config file saved in /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-21/tokenizer_config.json [INFO|tokenization_utils_base.py:2442] 2024-02-01 14:36:40,424 >> Special tokens file saved in /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-21/special_tokens_map.json [2024-02-01 14:36:41,670] [INFO] [logging.py:96:log_dist] [Rank 0] [Torch] Checkpoint global_step21 is about to be saved! /home/lirenhao/anaconda3/envs/llama_factory/lib/python3.10/site-packages/torch/nn/modules/module.py:1879: UserWarning: Positional args are being deprecated, use kwargs instead. Refer to https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module.state_dict for details. warnings.warn( /home/lirenhao/anaconda3/envs/llama_factory/lib/python3.10/site-packages/torch/nn/modules/module.py:1879: UserWarning: Positional args are being deprecated, use kwargs instead. Refer to https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module.state_dict for details. warnings.warn( /home/lirenhao/anaconda3/envs/llama_factory/lib/python3.10/site-packages/torch/nn/modules/module.py:1879: UserWarning: Positional args are being deprecated, use kwargs instead. Refer to https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module.state_dict for details. warnings.warn( /home/lirenhao/anaconda3/envs/llama_factory/lib/python3.10/site-packages/torch/nn/modules/module.py:1879: UserWarning: Positional args are being deprecated, use kwargs instead. Refer to https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module.state_dict for details. warnings.warn( [2024-02-01 14:36:41,683] [INFO] [logging.py:96:log_dist] [Rank 0] Saving model checkpoint: /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-21/global_step21/mp_rank_00_model_states.pt [2024-02-01 14:36:41,684] [INFO] [torch_checkpoint_engine.py:21:save] [Torch] Saving /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-21/global_step21/mp_rank_00_model_states.pt... [2024-02-01 14:37:17,058] [INFO] [torch_checkpoint_engine.py:23:save] [Torch] Saved /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-21/global_step21/mp_rank_00_model_states.pt. [2024-02-01 14:37:17,061] [INFO] [torch_checkpoint_engine.py:21:save] [Torch] Saving /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-21/global_step21/zero_pp_rank_0_mp_rank_00_optim_states.pt... [2024-02-01 14:38:15,362] [INFO] [torch_checkpoint_engine.py:23:save] [Torch] Saved /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-21/global_step21/zero_pp_rank_0_mp_rank_00_optim_states.pt. [2024-02-01 14:38:15,363] [INFO] [engine.py:3477:_save_zero_checkpoint] zero checkpoint saved /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-21/global_step21/zero_pp_rank_0_mp_rank_00_optim_states.pt [2024-02-01 14:38:15,363] [INFO] [torch_checkpoint_engine.py:33:commit] [Torch] Checkpoint global_step21 is ready now! /home/lirenhao/anaconda3/envs/llama_factory/lib/python3.10/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants. warnings.warn( 35%|███▍ | 22/63 [16:52<54:35, 79.88s/it] 37%|███▋ | 23/63 [17:32<45:23, 68.08s/it] 38%|███▊ | 24/63 [18:15<39:17, 60.44s/it] 40%|███▉ | 25/63 [18:54<34:12, 54.02s/it] 41%|████▏ | 26/63 [19:33<30:33, 49.54s/it] 43%|████▎ | 27/63 [20:12<27:49, 46.38s/it] 44%|████▍ | 28/63 [20:51<25:45, 44.17s/it] 46%|████▌ | 29/63 [21:31<24:19, 42.92s/it] 48%|████▊ | 30/63 [22:11<23:07, 42.06s/it] {'loss': 1.4173, 'learning_rate': 5.868240888334652e-07, 'epoch': 4.29} 48%|████▊ | 30/63 [22:11<23:07, 42.06s/it] 49%|████▉ | 31/63 [22:52<22:17, 41.80s/it] 51%|█████ | 32/63 [23:32<21:11, 41.02s/it] 52%|█████▏ | 33/63 [24:10<20:06, 40.20s/it] 54%|█████▍ | 34/63 [24:49<19:18, 39.96s/it] 56%|█████▌ | 35/63 [25:30<18:43, 40.11s/it] 57%|█████▋ | 36/63 [26:10<18:03, 40.13s/it] 59%|█████▊ | 37/63 [26:49<17:12, 39.70s/it] 60%|██████ | 38/63 [27:29<16:36, 39.88s/it] 62%|██████▏ | 39/63 [28:08<15:48, 39.51s/it] 63%|██████▎ | 40/63 [28:46<15:04, 39.34s/it] {'loss': 1.342, 'learning_rate': 3.4075667487415785e-07, 'epoch': 5.71} 63%|██████▎ | 40/63 [28:46<15:04, 39.34s/it] 65%|██████▌ | 41/63 [29:27<14:36, 39.84s/it] 67%|██████▋ | 42/63 [30:07<13:57, 39.87s/it][INFO|trainer.py:2926] 2024-02-01 14:52:21,426 >> Saving model checkpoint to /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-42 [INFO|configuration_utils.py:473] 2024-02-01 14:52:21,431 >> Configuration saved in /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-42/config.json [INFO|configuration_utils.py:594] 2024-02-01 14:52:21,432 >> Configuration saved in /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-42/generation_config.json [INFO|modeling_utils.py:2503] 2024-02-01 14:52:48,702 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 4 checkpoint shards. You can find where each parameters has been saved in the index located at /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-42/model.safetensors.index.json. [INFO|tokenization_utils_base.py:2433] 2024-02-01 14:52:48,704 >> tokenizer config file saved in /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-42/tokenizer_config.json [INFO|tokenization_utils_base.py:2442] 2024-02-01 14:52:48,704 >> Special tokens file saved in /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-42/special_tokens_map.json [2024-02-01 14:52:49,843] [INFO] [logging.py:96:log_dist] [Rank 0] [Torch] Checkpoint global_step42 is about to be saved! /home/lirenhao/anaconda3/envs/llama_factory/lib/python3.10/site-packages/torch/nn/modules/module.py:1879: UserWarning: Positional args are being deprecated, use kwargs instead. Refer to https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module.state_dict for details. warnings.warn( [2024-02-01 14:52:49,856] [INFO] [logging.py:96:log_dist] [Rank 0] Saving model checkpoint: /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-42/global_step42/mp_rank_00_model_states.pt [2024-02-01 14:52:49,856] [INFO] [torch_checkpoint_engine.py:21:save] [Torch] Saving /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-42/global_step42/mp_rank_00_model_states.pt... [2024-02-01 14:53:25,041] [INFO] [torch_checkpoint_engine.py:23:save] [Torch] Saved /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-42/global_step42/mp_rank_00_model_states.pt. [2024-02-01 14:53:25,044] [INFO] [torch_checkpoint_engine.py:21:save] [Torch] Saving /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-42/global_step42/zero_pp_rank_0_mp_rank_00_optim_states.pt... [2024-02-01 14:54:24,364] [INFO] [torch_checkpoint_engine.py:23:save] [Torch] Saved /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-42/global_step42/zero_pp_rank_0_mp_rank_00_optim_states.pt. [2024-02-01 14:54:24,364] [INFO] [engine.py:3477:_save_zero_checkpoint] zero checkpoint saved /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-42/global_step42/zero_pp_rank_0_mp_rank_00_optim_states.pt [2024-02-01 14:54:24,364] [INFO] [torch_checkpoint_engine.py:33:commit] [Torch] Checkpoint global_step42 is ready now! /home/lirenhao/anaconda3/envs/llama_factory/lib/python3.10/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants. warnings.warn( 68%|██████▊ | 43/63 [33:01<26:37, 79.86s/it] 70%|██████▉ | 44/63 [33:41<21:31, 67.96s/it] 71%|███████▏ | 45/63 [34:20<17:47, 59.29s/it] 73%|███████▎ | 46/63 [35:01<15:13, 53.75s/it] 75%|███████▍ | 47/63 [35:41<13:13, 49.58s/it] 76%|███████▌ | 48/63 [36:21<11:40, 46.71s/it] 78%|███████▊ | 49/63 [37:00<10:25, 44.69s/it] 79%|███████▉ | 50/63 [37:42<09:26, 43.60s/it] {'loss': 1.3108, 'learning_rate': 1.3347406408508694e-07, 'epoch': 7.14} 79%|███████▉ | 50/63 [37:42<09:26, 43.60s/it] 81%|████████ | 51/63 [38:20<08:24, 42.07s/it] 83%|████████▎ | 52/63 [39:00<07:34, 41.29s/it] 84%|████████▍ | 53/63 [39:41<06:52, 41.22s/it] 86%|████████▌ | 54/63 [40:21<06:07, 40.87s/it] 87%|████████▋ | 55/63 [41:00<05:22, 40.28s/it] 89%|████████▉ | 56/63 [41:38<04:39, 39.88s/it] 90%|█████████ | 57/63 [42:18<03:58, 39.78s/it] 92%|█████████▏| 58/63 [42:59<03:20, 40.10s/it] 94%|█████████▎| 59/63 [43:39<02:40, 40.24s/it] 95%|█████████▌| 60/63 [44:19<02:00, 40.04s/it] {'loss': 1.2987, 'learning_rate': 1.5461356885461075e-08, 'epoch': 8.57} 95%|█████████▌| 60/63 [44:19<02:00, 40.04s/it] 97%|█████████▋| 61/63 [44:58<01:19, 39.67s/it] 98%|█████████▊| 62/63 [45:38<00:39, 39.80s/it] 100%|██████████| 63/63 [46:16<00:00, 39.26s/it][INFO|trainer.py:2926] 2024-02-01 15:08:30,323 >> Saving model checkpoint to /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-63 [INFO|configuration_utils.py:473] 2024-02-01 15:08:30,328 >> Configuration saved in /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-63/config.json [INFO|configuration_utils.py:594] 2024-02-01 15:08:30,329 >> Configuration saved in /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-63/generation_config.json [INFO|modeling_utils.py:2503] 2024-02-01 15:08:57,391 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 4 checkpoint shards. You can find where each parameters has been saved in the index located at /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-63/model.safetensors.index.json. [INFO|tokenization_utils_base.py:2433] 2024-02-01 15:08:57,393 >> tokenizer config file saved in /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-63/tokenizer_config.json [INFO|tokenization_utils_base.py:2442] 2024-02-01 15:08:57,393 >> Special tokens file saved in /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-63/special_tokens_map.json [2024-02-01 15:08:58,595] [INFO] [logging.py:96:log_dist] [Rank 0] [Torch] Checkpoint global_step63 is about to be saved! /home/lirenhao/anaconda3/envs/llama_factory/lib/python3.10/site-packages/torch/nn/modules/module.py:1879: UserWarning: Positional args are being deprecated, use kwargs instead. Refer to https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module.state_dict for details. warnings.warn( [2024-02-01 15:08:58,608] [INFO] [logging.py:96:log_dist] [Rank 0] Saving model checkpoint: /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-63/global_step63/mp_rank_00_model_states.pt [2024-02-01 15:08:58,608] [INFO] [torch_checkpoint_engine.py:21:save] [Torch] Saving /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-63/global_step63/mp_rank_00_model_states.pt... [2024-02-01 15:09:33,948] [INFO] [torch_checkpoint_engine.py:23:save] [Torch] Saved /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-63/global_step63/mp_rank_00_model_states.pt. [2024-02-01 15:09:33,951] [INFO] [torch_checkpoint_engine.py:21:save] [Torch] Saving /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-63/global_step63/zero_pp_rank_0_mp_rank_00_optim_states.pt... [2024-02-01 15:10:31,865] [INFO] [torch_checkpoint_engine.py:23:save] [Torch] Saved /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-63/global_step63/zero_pp_rank_0_mp_rank_00_optim_states.pt. [2024-02-01 15:10:31,866] [INFO] [engine.py:3477:_save_zero_checkpoint] zero checkpoint saved /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tmp-checkpoint-63/global_step63/zero_pp_rank_0_mp_rank_00_optim_states.pt [2024-02-01 15:10:31,866] [INFO] [torch_checkpoint_engine.py:33:commit] [Torch] Checkpoint global_step63 is ready now! [INFO|trainer.py:1962] 2024-02-01 15:10:32,863 >> Training completed. Do not forget to share your model on huggingface.co/models =) {'train_runtime': 2910.9748, 'train_samples_per_second': 9.69, 'train_steps_per_second': 0.022, 'train_loss': 1.4981852107577853, 'epoch': 9.0} 100%|██████████| 63/63 [48:30<00:00, 39.26s/it] 100%|██████████| 63/63 [48:30<00:00, 46.21s/it] [INFO|trainer.py:2926] 2024-02-01 15:10:44,639 >> Saving model checkpoint to /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9 [INFO|configuration_utils.py:473] 2024-02-01 15:10:44,787 >> Configuration saved in /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/config.json [INFO|configuration_utils.py:594] 2024-02-01 15:10:44,788 >> Configuration saved in /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/generation_config.json [2024-02-01 15:10:49,742] [INFO] [launch.py:347:main] Process 3771596 exits successfully. [2024-02-01 15:10:49,742] [INFO] [launch.py:347:main] Process 3771597 exits successfully. [2024-02-01 15:10:49,742] [INFO] [launch.py:347:main] Process 3771598 exits successfully. [INFO|modeling_utils.py:2503] 2024-02-01 15:11:12,707 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 4 checkpoint shards. You can find where each parameters has been saved in the index located at /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/model.safetensors.index.json. [INFO|tokenization_utils_base.py:2433] 2024-02-01 15:11:12,709 >> tokenizer config file saved in /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/tokenizer_config.json [INFO|tokenization_utils_base.py:2442] 2024-02-01 15:11:12,709 >> Special tokens file saved in /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/special_tokens_map.json ***** train metrics ***** epoch = 9.0 train_loss = 1.4982 train_runtime = 0:48:30.97 train_samples_per_second = 9.69 train_steps_per_second = 0.022 Figure saved: /home/lirenhao/projects/LLaMA-Factory/output/9f100e26-d997-46e8-afee-721977a16ca9/training_loss.png 02/01/2024 15:11:14 - WARNING - llmtuner.extras.ploting - No metric eval_loss to plot. [INFO|modelcard.py:452] 2024-02-01 15:11:14,095 >> Dropping the following result as it does not have all the necessary fields: {'task': {'name': 'Causal Language Modeling', 'type': 'text-generation'}} [2024-02-01 15:11:17,773] [INFO] [launch.py:347:main] Process 3771595 exits successfully.