# Copyright 2024 Bytedance Ltd. and/or its affiliates # # Permission is hereby granted, free of charge, to any person obtaining a copy of this software # and associated documentation files (the “Software”), to deal in the Software without # restriction, including without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all copies or # substantial portions of the Software. # # THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR # OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, # ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR # OTHER DEALINGS IN THE SOFTWARE. import logging import torch from torch import nn from transformers import AutoModel, PreTrainedModel from torch.nn import functional as F logger = logging.getLogger(__name__) class ListTransformer(nn.Module): def __init__(self, num_layer, config, device) -> None: super().__init__() self.config = config self.device = device self.list_transformer_layer = nn.TransformerEncoderLayer(1792, self.config.num_attention_heads, batch_first=True, activation=F.gelu, norm_first=False) self.list_transformer = nn.TransformerEncoder(self.list_transformer_layer, num_layer) self.relu = nn.ReLU() self.query_embedding = QueryEmbedding(config, device) self.linear_score3 = nn.Linear(1792 * 2, 1792) self.linear_score2 = nn.Linear(1792 * 2, 1792) self.linear_score1 = nn.Linear(1792 * 2, 1) def forward(self, pair_features, pair_nums): pair_nums = [x + 1 for x in pair_nums] batch_pair_features = pair_features.split(pair_nums) pair_feature_query_passage_concat_list = [] for i in range(len(batch_pair_features)): pair_feature_query = batch_pair_features[i][0].unsqueeze(0).repeat(pair_nums[i] - 1, 1) pair_feature_passage = batch_pair_features[i][1:] pair_feature_query_passage_concat_list.append(torch.cat([pair_feature_query, pair_feature_passage], dim=1)) pair_feature_query_passage_concat = torch.cat(pair_feature_query_passage_concat_list, dim=0) batch_pair_features = nn.utils.rnn.pad_sequence(batch_pair_features, batch_first=True) query_embedding_tags = torch.zeros(batch_pair_features.size(0), batch_pair_features.size(1), dtype=torch.long, device=self.device) query_embedding_tags[:, 0] = 1 batch_pair_features = self.query_embedding(batch_pair_features, query_embedding_tags) mask = self.generate_attention_mask(pair_nums) query_mask = self.generate_attention_mask_custom(pair_nums) pair_list_features = self.list_transformer(batch_pair_features, src_key_padding_mask=mask, mask=query_mask) output_pair_list_features = [] output_query_list_features = [] pair_features_after_transformer_list = [] for idx, pair_num in enumerate(pair_nums): output_pair_list_features.append(pair_list_features[idx, 1:pair_num, :]) output_query_list_features.append(pair_list_features[idx, 0, :]) pair_features_after_transformer_list.append(pair_list_features[idx, :pair_num, :]) pair_features_after_transformer_cat_query_list = [] for idx, pair_num in enumerate(pair_nums): query_ft = output_query_list_features[idx].unsqueeze(0).repeat(pair_num - 1, 1) pair_features_after_transformer_cat_query = torch.cat([query_ft, output_pair_list_features[idx]], dim=1) pair_features_after_transformer_cat_query_list.append(pair_features_after_transformer_cat_query) pair_features_after_transformer_cat_query = torch.cat(pair_features_after_transformer_cat_query_list, dim=0) pair_feature_query_passage_concat = self.relu(self.linear_score2(pair_feature_query_passage_concat)) pair_features_after_transformer_cat_query = self.relu(self.linear_score3(pair_features_after_transformer_cat_query)) final_ft = torch.cat([pair_feature_query_passage_concat, pair_features_after_transformer_cat_query], dim=1) logits = self.linear_score1(final_ft).squeeze() return logits, torch.cat(pair_features_after_transformer_list, dim=0) def generate_attention_mask(self, pair_num): max_len = max(pair_num) batch_size = len(pair_num) mask = torch.zeros(batch_size, max_len, dtype=torch.bool, device=self.device) for i, length in enumerate(pair_num): mask[i, length:] = True return mask def generate_attention_mask_custom(self, pair_num): max_len = max(pair_num) mask = torch.zeros(max_len, max_len, dtype=torch.bool, device=self.device) mask[0, 1:] = True return mask class QueryEmbedding(nn.Module): def __init__(self, config, device) -> None: super().__init__() self.query_embedding = nn.Embedding(2, 1792) self.layerNorm = nn.LayerNorm(1792) def forward(self, x, tags): query_embeddings = self.query_embedding(tags) x += query_embeddings x = self.layerNorm(x) return x class CrossEncoder(nn.Module): def __init__(self, hf_model: PreTrainedModel, list_transformer_layer_4eval: int=None): super().__init__() self.hf_model = hf_model self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.sigmoid = nn.Sigmoid() self.config = self.hf_model.config self.config.output_hidden_states = True self.linear_in_embedding = nn.Linear(1024, 1792) self.list_transformer_layer = list_transformer_layer_4eval self.list_transformer = ListTransformer(self.list_transformer_layer, self.config, self.device) def forward(self, batch): if 'pair_num' in batch: pair_nums = batch.pop('pair_num').tolist() if self.training: pass else: split_batch = 400 input_ids = batch['input_ids'] attention_mask = batch['attention_mask'] if sum(pair_nums) > split_batch: last_hidden_state_list = [] input_ids_list = input_ids.split(split_batch) attention_mask_list = attention_mask.split(split_batch) for i in range(len(input_ids_list)): last_hidden_state = self.hf_model(input_ids=input_ids_list[i], attention_mask=attention_mask_list[i], return_dict=True).hidden_states[-1] last_hidden_state_list.append(last_hidden_state) last_hidden_state = torch.cat(last_hidden_state_list, dim=0) else: ranker_out = self.hf_model(**batch, return_dict=True) last_hidden_state = ranker_out.last_hidden_state pair_features = self.average_pooling(last_hidden_state, attention_mask) pair_features = self.linear_in_embedding(pair_features) logits, pair_features_after_list_transformer = self.list_transformer(pair_features, pair_nums) logits = self.sigmoid(logits) return logits @classmethod def from_pretrained_for_eval(cls, model_name_or_path, list_transformer_layer): hf_model = AutoModel.from_pretrained(model_name_or_path) reranker = cls(hf_model, list_transformer_layer) reranker.linear_in_embedding.load_state_dict(torch.load(model_name_or_path + '/linear_in_embedding.pt')) reranker.list_transformer.load_state_dict(torch.load(model_name_or_path + '/list_transformer.pt')) return reranker def average_pooling(self, hidden_state, attention_mask): extended_attention_mask = attention_mask.unsqueeze(-1).expand(hidden_state.size()).to(dtype=hidden_state.dtype) masked_hidden_state = hidden_state * extended_attention_mask sum_embeddings = torch.sum(masked_hidden_state, dim=1) sum_mask = extended_attention_mask.sum(dim=1) return sum_embeddings / sum_mask