# Copyright 2024 Bytedance Ltd. and/or its affiliates # # Permission is hereby granted, free of charge, to any person obtaining a copy of this software # and associated documentation files (the “Software”), to deal in the Software without # restriction, including without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all copies or # substantial portions of the Software. # # THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR # OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, # ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR # OTHER DEALINGS IN THE SOFTWARE. import logging import numpy as np from mteb import RerankingEvaluator, AbsTaskReranking from tqdm import tqdm logger = logging.getLogger(__name__) class ChineseRerankingEvaluator(RerankingEvaluator): """ This class evaluates a SentenceTransformer model for the task of re-ranking. Given a query and a list of documents, it computes the score [query, doc_i] for all possible documents and sorts them in decreasing order. Then, MRR@10 and MAP is compute to measure the quality of the ranking. :param samples: Must be a list and each element is of the form: - {'query': '', 'positive': [], 'negative': []}. Query is the search query, positive is a list of positive (relevant) documents, negative is a list of negative (irrelevant) documents. - {'query': [], 'positive': [], 'negative': []}. Where query is a list of strings, which embeddings we average to get the query embedding. """ def __call__(self, model): scores = self.compute_metrics(model) return scores def compute_metrics(self, model): return ( self.compute_metrics_batched(model) if self.use_batched_encoding else self.compute_metrics_individual(model) ) def compute_metrics_batched(self, model): """ Computes the metrices in a batched way, by batching all queries and all documents together """ if hasattr(model, 'compute_score'): return self.compute_metrics_batched_from_crossencoder(model) else: return self.compute_metrics_batched_from_biencoder(model) def compute_metrics_batched_from_crossencoder(self, model): batch_size = 4 all_ap_scores = [] all_mrr_1_scores = [] all_mrr_5_scores = [] all_mrr_10_scores = [] all_scores = [] tmp_pairs = [] for sample in tqdm(self.samples, desc="Evaluating"): b_pairs = [sample['query']] for p in sample['positive']: b_pairs.append(p) for n in sample['negative']: b_pairs.append(n) tmp_pairs.append(b_pairs) if len(tmp_pairs) == batch_size: sample_scores = model.compute_score(tmp_pairs) sample_scores = sum(sample_scores, []) all_scores += sample_scores tmp_pairs = [] if len(tmp_pairs) > 0: sample_scores = model.compute_score(tmp_pairs) sample_scores = sum(sample_scores, []) all_scores += sample_scores all_scores = np.array(all_scores) start_inx = 0 for sample in tqdm(self.samples, desc="Evaluating"): is_relevant = [True] * len(sample['positive']) + [False] * len(sample['negative']) pred_scores = all_scores[start_inx:start_inx + len(is_relevant)] start_inx += len(is_relevant) pred_scores_argsort = np.argsort(-pred_scores) # Sort in decreasing order ap = self.ap_score(is_relevant, pred_scores) mrr_1 = self.mrr_at_k_score(is_relevant, pred_scores_argsort, 1) mrr_5 = self.mrr_at_k_score(is_relevant, pred_scores_argsort, 5) mrr_10 = self.mrr_at_k_score(is_relevant, pred_scores_argsort, 10) all_mrr_1_scores.append(mrr_1) all_mrr_5_scores.append(mrr_5) all_mrr_10_scores.append(mrr_10) all_ap_scores.append(ap) mean_ap = np.mean(all_ap_scores) mean_mrr_1 = np.mean(all_mrr_1_scores) mean_mrr_5 = np.mean(all_mrr_5_scores) mean_mrr_10 = np.mean(all_mrr_10_scores) return {"map": mean_ap, "mrr_1": mean_mrr_1, 'mrr_5': mean_mrr_5, 'mrr_10': mean_mrr_10} def compute_metrics_batched_from_biencoder(self, model): all_mrr_scores = [] all_ap_scores = [] logger.info("Encoding queries...") if isinstance(self.samples[0]["query"], str): if hasattr(model, 'encode_queries'): all_query_embs = model.encode_queries( [sample["query"] for sample in self.samples], convert_to_tensor=True, batch_size=self.batch_size, ) else: all_query_embs = model.encode( [sample["query"] for sample in self.samples], convert_to_tensor=True, batch_size=self.batch_size, ) elif isinstance(self.samples[0]["query"], list): # In case the query is a list of strings, we get the most similar embedding to any of the queries all_query_flattened = [q for sample in self.samples for q in sample["query"]] if hasattr(model, 'encode_queries'): all_query_embs = model.encode_queries(all_query_flattened, convert_to_tensor=True, batch_size=self.batch_size) else: all_query_embs = model.encode(all_query_flattened, convert_to_tensor=True, batch_size=self.batch_size) else: raise ValueError(f"Query must be a string or a list of strings but is {type(self.samples[0]['query'])}") logger.info("Encoding candidates...") all_docs = [] for sample in self.samples: all_docs.extend(sample["positive"]) all_docs.extend(sample["negative"]) all_docs_embs = model.encode(all_docs, convert_to_tensor=True, batch_size=self.batch_size) # Compute scores logger.info("Evaluating...") query_idx, docs_idx = 0, 0 for instance in self.samples: num_subqueries = len(instance["query"]) if isinstance(instance["query"], list) else 1 query_emb = all_query_embs[query_idx: query_idx + num_subqueries] query_idx += num_subqueries num_pos = len(instance["positive"]) num_neg = len(instance["negative"]) docs_emb = all_docs_embs[docs_idx: docs_idx + num_pos + num_neg] docs_idx += num_pos + num_neg if num_pos == 0 or num_neg == 0: continue is_relevant = [True] * num_pos + [False] * num_neg scores = self._compute_metrics_instance(query_emb, docs_emb, is_relevant) all_mrr_scores.append(scores["mrr"]) all_ap_scores.append(scores["ap"]) mean_ap = np.mean(all_ap_scores) mean_mrr = np.mean(all_mrr_scores) return {"map": mean_ap, "mrr": mean_mrr} def evaluate(self, model, split="test", **kwargs): if not self.data_loaded: self.load_data() data_split = self.dataset[split] evaluator = ChineseRerankingEvaluator(data_split, **kwargs) scores = evaluator(model) return dict(scores) AbsTaskReranking.evaluate = evaluate class T2Reranking(AbsTaskReranking): @property def description(self): return { 'name': 'T2Reranking', 'hf_hub_name': "C-MTEB/T2Reranking", 'description': 'T2Ranking: A large-scale Chinese Benchmark for Passage Ranking', "reference": "https://arxiv.org/abs/2304.03679", 'type': 'Reranking', 'category': 's2p', 'eval_splits': ['dev'], 'eval_langs': ['zh'], 'main_score': 'map', } class T2RerankingZh2En(AbsTaskReranking): @property def description(self): return { 'name': 'T2RerankingZh2En', 'hf_hub_name': "C-MTEB/T2Reranking_zh2en", 'description': 'T2Ranking: A large-scale Chinese Benchmark for Passage Ranking', "reference": "https://arxiv.org/abs/2304.03679", 'type': 'Reranking', 'category': 's2p', 'eval_splits': ['dev'], 'eval_langs': ['zh2en'], 'main_score': 'map', } class T2RerankingEn2Zh(AbsTaskReranking): @property def description(self): return { 'name': 'T2RerankingEn2Zh', 'hf_hub_name': "C-MTEB/T2Reranking_en2zh", 'description': 'T2Ranking: A large-scale Chinese Benchmark for Passage Ranking', "reference": "https://arxiv.org/abs/2304.03679", 'type': 'Reranking', 'category': 's2p', 'eval_splits': ['dev'], 'eval_langs': ['en2zh'], 'main_score': 'map', } class MMarcoReranking(AbsTaskReranking): @property def description(self): return { 'name': 'MMarcoReranking', 'hf_hub_name': "C-MTEB/Mmarco-reranking", 'description': 'mMARCO is a multilingual version of the MS MARCO passage ranking dataset', "reference": "https://github.com/unicamp-dl/mMARCO", 'type': 'Reranking', 'category': 's2p', 'eval_splits': ['dev'], 'eval_langs': ['zh'], 'main_score': 'map', } class CMedQAv1(AbsTaskReranking): @property def description(self): return { 'name': 'CMedQAv1', "hf_hub_name": "C-MTEB/CMedQAv1-reranking", 'description': 'Chinese community medical question answering', "reference": "https://github.com/zhangsheng93/cMedQA", 'type': 'Reranking', 'category': 's2p', 'eval_splits': ['test'], 'eval_langs': ['zh'], 'main_score': 'map', } class CMedQAv2(AbsTaskReranking): @property def description(self): return { 'name': 'CMedQAv2', "hf_hub_name": "C-MTEB/CMedQAv2-reranking", 'description': 'Chinese community medical question answering', "reference": "https://github.com/zhangsheng93/cMedQA2", 'type': 'Reranking', 'category': 's2p', 'eval_splits': ['test'], 'eval_langs': ['zh'], 'main_score': 'map', }