import comfy.samplers import comfy.sample from comfy.k_diffusion import sampling as k_diffusion_sampling import latent_preview import torch import comfy.utils class HyperSDXL1StepUnetScheduler: @classmethod def INPUT_TYPES(s): return {"required": {"model": ("MODEL",), "steps": ("INT", {"default": 1, "min": 1, "max": 10}), } } RETURN_TYPES = ("SIGMAS",) CATEGORY = "sampling/custom_sampling/schedulers" FUNCTION = "get_sigmas" def get_sigmas(self, model, steps): timesteps = torch.tensor([800]) sigmas = model.model.model_sampling.sigma(timesteps) sigmas = torch.cat([sigmas, sigmas.new_zeros([1])]) return (sigmas, ) NODE_CLASS_MAPPINGS = { "HyperSDXL1StepUnetScheduler": HyperSDXL1StepUnetScheduler, }