--- license: apache-2.0 base_model: alignment-handbook/zephyr-7b-sft-full tags: - alignment-handbook - trl - dpo - generated_from_trainer - trl - dpo - generated_from_trainer datasets: - HuggingFaceH4/ultrafeedback_binarized model-index: - name: zephyr-7b-dpo-full results: [] --- # zephyr-7b-dpo-full This model is a fine-tuned version of [alignment-handbook/zephyr-7b-sft-full](https://huggingface.co/alignment-handbook/zephyr-7b-sft-full) on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set: - Loss: 0.5020 - Rewards/chosen: -0.8985 - Rewards/rejected: -1.8744 - Rewards/accuracies: 0.7812 - Rewards/margins: 0.9759 - Logps/rejected: -450.1291 - Logps/chosen: -352.4258 - Logits/rejected: 1.7371 - Logits/chosen: 0.9003 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.5709 | 0.2092 | 100 | 0.5765 | -0.3415 | -0.8321 | 0.7305 | 0.4906 | -345.8958 | -296.7220 | -1.0885 | -1.2465 | | 0.5427 | 0.4184 | 200 | 0.5256 | -0.7352 | -1.5375 | 0.7695 | 0.8022 | -416.4311 | -336.0986 | 0.9059 | 0.1815 | | 0.4892 | 0.6276 | 300 | 0.5082 | -0.8910 | -1.8210 | 0.7695 | 0.9300 | -444.7822 | -351.6719 | 1.3892 | 0.5828 | | 0.5037 | 0.8368 | 400 | 0.5031 | -0.8365 | -1.7881 | 0.7852 | 0.9517 | -441.4968 | -346.2211 | 1.6106 | 0.7959 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 3.1.0 - Tokenizers 0.19.1