--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: Variome_5e-05_29_03 results: [] --- # Variome_5e-05_29_03 This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1054 - Precision: 0.5304 - Recall: 0.4586 - F1: 0.4919 - Accuracy: 0.9843 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.5733 | 5.0 | 25 | 0.1581 | 0.0 | 0.0 | 0.0 | 0.9794 | | 0.1685 | 10.0 | 50 | 0.1553 | 0.0 | 0.0 | 0.0 | 0.9794 | | 0.1691 | 15.0 | 75 | 0.1547 | 0.0 | 0.0 | 0.0 | 0.9794 | | 0.1606 | 20.0 | 100 | 0.1335 | 0.0 | 0.0 | 0.0 | 0.9794 | | 0.1144 | 25.0 | 125 | 0.1044 | 0.2151 | 0.1504 | 0.1770 | 0.9802 | | 0.0795 | 30.0 | 150 | 0.1023 | 0.2 | 0.1504 | 0.1717 | 0.9804 | | 0.0612 | 35.0 | 175 | 0.1102 | 0.4118 | 0.2105 | 0.2786 | 0.9831 | | 0.0465 | 40.0 | 200 | 0.0991 | 0.4158 | 0.3158 | 0.3590 | 0.9840 | | 0.0352 | 45.0 | 225 | 0.0995 | 0.4653 | 0.3534 | 0.4017 | 0.9838 | | 0.0281 | 50.0 | 250 | 0.0969 | 0.4685 | 0.3910 | 0.4262 | 0.9838 | | 0.0223 | 55.0 | 275 | 0.0976 | 0.5684 | 0.4060 | 0.4737 | 0.9853 | | 0.0183 | 60.0 | 300 | 0.0992 | 0.5093 | 0.4135 | 0.4564 | 0.9848 | | 0.0154 | 65.0 | 325 | 0.0996 | 0.5816 | 0.4286 | 0.4935 | 0.9858 | | 0.0131 | 70.0 | 350 | 0.1007 | 0.5221 | 0.4436 | 0.4797 | 0.9842 | | 0.0109 | 75.0 | 375 | 0.1023 | 0.5130 | 0.4436 | 0.4758 | 0.9842 | | 0.0094 | 80.0 | 400 | 0.1037 | 0.5566 | 0.4436 | 0.4937 | 0.9851 | | 0.0085 | 85.0 | 425 | 0.1054 | 0.5304 | 0.4586 | 0.4919 | 0.9843 | ### Framework versions - Transformers 4.27.4 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2