--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: Variome_0.0001_0404_ES6_strict_tok results: [] --- # Variome_0.0001_0404_ES6_strict_tok This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1843 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - Accuracy: 0.9759 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | 0.4144 | 0.13 | 25 | 0.1849 | 0.0 | 0.0 | 0.0 | 0.9759 | | 0.1834 | 0.26 | 50 | 0.1818 | 0.0 | 0.0 | 0.0 | 0.9759 | | 0.1924 | 0.39 | 75 | 0.1828 | 0.0 | 0.0 | 0.0 | 0.9759 | | 0.1806 | 0.52 | 100 | 0.1817 | 0.0 | 0.0 | 0.0 | 0.9759 | | 0.1699 | 0.65 | 125 | 0.1863 | 0.0 | 0.0 | 0.0 | 0.9759 | | 0.1783 | 0.79 | 150 | 0.1812 | 0.0 | 0.0 | 0.0 | 0.9759 | | 0.1747 | 0.92 | 175 | 0.1816 | 0.0 | 0.0 | 0.0 | 0.9759 | | 0.1583 | 1.05 | 200 | 0.1843 | 0.0 | 0.0 | 0.0 | 0.9759 | ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3