--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: SETH_5e-5_0.03_29_03 results: [] --- # SETH_5e-5_0.03_29_03 This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0720 - Precision: 0.7492 - Recall: 0.8176 - F1: 0.7819 - Accuracy: 0.9828 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3766 | 0.96 | 25 | 0.1685 | 0.0 | 0.0 | 0.0 | 0.9583 | | 0.1045 | 1.92 | 50 | 0.0804 | 0.4570 | 0.7143 | 0.5574 | 0.9703 | | 0.062 | 2.88 | 75 | 0.0667 | 0.5704 | 0.8090 | 0.6690 | 0.9756 | | 0.0476 | 3.85 | 100 | 0.0604 | 0.6716 | 0.8520 | 0.7511 | 0.9797 | | 0.0394 | 4.81 | 125 | 0.0667 | 0.6328 | 0.8571 | 0.7281 | 0.9765 | | 0.0297 | 5.77 | 150 | 0.0602 | 0.6823 | 0.8279 | 0.7481 | 0.9802 | | 0.0263 | 6.73 | 175 | 0.0644 | 0.7544 | 0.8090 | 0.7807 | 0.9824 | | 0.0203 | 7.69 | 200 | 0.0670 | 0.6922 | 0.8399 | 0.7589 | 0.9807 | | 0.0149 | 8.65 | 225 | 0.0680 | 0.7456 | 0.7969 | 0.7704 | 0.9816 | | 0.0163 | 9.62 | 250 | 0.0757 | 0.7184 | 0.7728 | 0.7446 | 0.9800 | | 0.0121 | 10.58 | 275 | 0.0764 | 0.6942 | 0.8675 | 0.7712 | 0.9809 | | 0.0102 | 11.54 | 300 | 0.0720 | 0.7492 | 0.8176 | 0.7819 | 0.9828 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2