MBART to "translate" English to AMR
To be used with MBART text-to-AMR pipeline (not yet available). Won't work with the default MBartTokenizer so you have to be patient until the pipeline can become available. :-)
This model is a fine-tuned version of facebook/mbart-large-cc25 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2811
- Accuracy: 0.9361
- Bleu: 73.0667
- Smatch Precision: 0.8451
- Smatch Recall: 0.9039
- Smatch Fscore: 0.8735
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Bleu | Smatch Precision | Smatch Recall | Smatch Fscore | Ratio Invalid Amrs |
---|---|---|---|---|---|---|---|---|---|
1.5295 | 0.23 | 100 | 1.2218 | 0.7536 | 55.6802 | 0.2551 | 0.6184 | 0.3612 | 86.6434 |
0.978 | 0.46 | 200 | 0.7306 | 0.8311 | 63.4299 | 0.3785 | 0.7182 | 0.4957 | 87.0499 |
0.7187 | 0.69 | 300 | 0.5882 | 0.8484 | 66.1354 | 0.5547 | 0.8481 | 0.6707 | 93.9605 |
0.599 | 0.92 | 400 | 0.4560 | 0.8820 | 68.3221 | 0.6594 | 0.8046 | 0.7248 | 89.7213 |
0.4842 | 1.15 | 500 | 0.3876 | 0.8904 | 69.5185 | 0.7491 | 0.8648 | 0.8028 | 92.2764 |
0.4311 | 1.38 | 600 | 0.3653 | 0.8913 | 69.7931 | 0.7589 | 0.8922 | 0.8202 | 92.6249 |
0.4171 | 1.61 | 700 | 0.3244 | 0.9084 | 70.8940 | 0.7759 | 0.8615 | 0.8165 | 90.0697 |
0.3769 | 1.84 | 800 | 0.2995 | 0.9128 | 71.0933 | 0.7824 | 0.8688 | 0.8234 | 89.6051 |
0.3121 | 2.07 | 900 | 0.2869 | 0.9177 | 71.3434 | 0.8014 | 0.8831 | 0.8403 | 89.8955 |
0.2843 | 2.3 | 1000 | 0.2755 | 0.9190 | 71.2255 | 0.8021 | 0.8766 | 0.8377 | 89.3148 |
0.3013 | 2.53 | 1100 | 0.2876 | 0.9140 | 70.8907 | 0.7391 | 0.8503 | 0.7908 | 86.0627 |
0.3192 | 2.76 | 1200 | 0.2674 | 0.9206 | 71.4303 | 0.8179 | 0.8991 | 0.8566 | 89.7793 |
0.3032 | 2.99 | 1300 | 0.2597 | 0.9230 | 71.6003 | 0.7791 | 0.8794 | 0.8262 | 89.1405 |
0.2367 | 3.23 | 1400 | 0.2933 | 0.9148 | 71.7204 | 0.8318 | 0.8935 | 0.8615 | 91.4634 |
0.247 | 3.46 | 1500 | 0.2505 | 0.9272 | 72.1396 | 0.8224 | 0.8889 | 0.8543 | 89.0244 |
0.2326 | 3.69 | 1600 | 0.2467 | 0.9284 | 72.0828 | 0.8257 | 0.8992 | 0.8609 | 88.8502 |
0.2622 | 3.92 | 1700 | 0.2590 | 0.9236 | 71.9205 | 0.8231 | 0.8902 | 0.8553 | 90.0697 |
0.1935 | 4.15 | 1800 | 0.2528 | 0.9281 | 72.0722 | 0.8523 | 0.9075 | 0.8790 | 88.7340 |
0.2067 | 4.38 | 1900 | 0.2480 | 0.9287 | 72.2628 | 0.8322 | 0.9062 | 0.8677 | 89.1405 |
0.2248 | 4.61 | 2000 | 0.2520 | 0.9273 | 72.4493 | 0.8474 | 0.9023 | 0.8740 | 89.5470 |
0.2049 | 4.84 | 2100 | 0.2403 | 0.9316 | 72.3463 | 0.8231 | 0.8998 | 0.8598 | 88.0952 |
0.1942 | 5.07 | 2200 | 0.2482 | 0.9314 | 72.4402 | 0.8291 | 0.8987 | 0.8625 | 89.6051 |
0.1796 | 5.3 | 2300 | 0.2587 | 0.9319 | 72.6028 | 0.8349 | 0.8955 | 0.8642 | 88.0952 |
0.1852 | 5.53 | 2400 | 0.2550 | 0.9316 | 72.4129 | 0.8435 | 0.9002 | 0.8710 | 88.4437 |
0.1898 | 5.76 | 2500 | 0.2493 | 0.9321 | 72.5551 | 0.8269 | 0.8957 | 0.8599 | 87.7468 |
0.1861 | 5.99 | 2600 | 0.2459 | 0.9314 | 72.4291 | 0.8565 | 0.9085 | 0.8817 | 88.2695 |
0.1568 | 6.22 | 2700 | 0.2487 | 0.9321 | 72.5308 | 0.8582 | 0.9122 | 0.8844 | 88.1533 |
0.1491 | 6.45 | 2800 | 0.2461 | 0.9331 | 72.6714 | 0.8632 | 0.9154 | 0.8885 | 88.5598 |
0.1437 | 6.68 | 2900 | 0.2434 | 0.9330 | 72.6621 | 0.8699 | 0.9097 | 0.8893 | 88.2695 |
0.1504 | 6.91 | 3000 | 0.2496 | 0.9341 | 72.7762 | 0.8544 | 0.9021 | 0.8776 | 87.5726 |
0.1313 | 7.14 | 3100 | 0.2510 | 0.9339 | 72.7713 | 0.8674 | 0.9048 | 0.8857 | 88.0372 |
0.1501 | 7.37 | 3200 | 0.2502 | 0.9343 | 72.7488 | 0.8633 | 0.9016 | 0.8820 | 88.3275 |
0.1295 | 7.6 | 3300 | 0.2459 | 0.9348 | 72.6939 | 0.8365 | 0.8969 | 0.8657 | 87.9210 |
0.1262 | 7.83 | 3400 | 0.2524 | 0.9318 | 72.8235 | 0.8509 | 0.9077 | 0.8784 | 88.3275 |
0.1072 | 8.06 | 3500 | 0.2551 | 0.9346 | 72.7323 | 0.8566 | 0.9022 | 0.8788 | 88.2695 |
0.1198 | 8.29 | 3600 | 0.2549 | 0.9350 | 72.8186 | 0.8638 | 0.9099 | 0.8862 | 88.0372 |
0.1175 | 8.52 | 3700 | 0.2581 | 0.9331 | 72.6339 | 0.8624 | 0.9054 | 0.8834 | 88.5598 |
0.1173 | 8.75 | 3800 | 0.2508 | 0.9357 | 73.1089 | 0.8515 | 0.9057 | 0.8778 | 87.9791 |
0.1208 | 8.98 | 3900 | 0.2542 | 0.9335 | 72.8848 | 0.8416 | 0.8972 | 0.8685 | 87.9210 |
0.0874 | 9.22 | 4000 | 0.2580 | 0.9350 | 72.9432 | 0.8532 | 0.9052 | 0.8784 | 88.0372 |
0.1019 | 9.45 | 4100 | 0.2615 | 0.9351 | 72.8476 | 0.8704 | 0.9024 | 0.8862 | 87.9791 |
0.1039 | 9.68 | 4200 | 0.2635 | 0.9331 | 72.8678 | 0.8432 | 0.8900 | 0.8660 | 87.2242 |
0.0986 | 9.91 | 4300 | 0.2588 | 0.9352 | 72.9545 | 0.8548 | 0.9078 | 0.8805 | 87.7468 |
0.0867 | 10.14 | 4400 | 0.2659 | 0.9347 | 72.8253 | 0.8574 | 0.9025 | 0.8794 | 87.9210 |
0.1029 | 10.37 | 4500 | 0.2651 | 0.9350 | 72.9023 | 0.8480 | 0.9042 | 0.8752 | 87.8630 |
0.0935 | 10.6 | 4600 | 0.2669 | 0.9344 | 72.8549 | 0.8438 | 0.8981 | 0.8701 | 87.9791 |
0.0944 | 10.83 | 4700 | 0.2703 | 0.9334 | 72.8564 | 0.8460 | 0.9021 | 0.8732 | 87.3403 |
0.0724 | 11.06 | 4800 | 0.2712 | 0.9349 | 72.9326 | 0.8435 | 0.9010 | 0.8713 | 88.2695 |
0.0906 | 11.29 | 4900 | 0.2708 | 0.9351 | 72.8490 | 0.8513 | 0.9062 | 0.8779 | 87.8049 |
0.0819 | 11.52 | 5000 | 0.2683 | 0.9356 | 72.8973 | 0.8304 | 0.9056 | 0.8664 | 87.9791 |
0.0892 | 11.75 | 5100 | 0.2704 | 0.9361 | 72.9746 | 0.8463 | 0.9069 | 0.8755 | 87.9210 |
0.0791 | 11.98 | 5200 | 0.2705 | 0.9353 | 72.9050 | 0.8475 | 0.9064 | 0.8759 | 88.1533 |
0.0718 | 12.21 | 5300 | 0.2751 | 0.9361 | 73.0216 | 0.8546 | 0.9035 | 0.8783 | 87.9791 |
0.0744 | 12.44 | 5400 | 0.2769 | 0.9355 | 72.9041 | 0.8717 | 0.9063 | 0.8886 | 87.9210 |
0.081 | 12.67 | 5500 | 0.2735 | 0.9359 | 72.9850 | 0.8501 | 0.9092 | 0.8786 | 87.8630 |
0.0757 | 12.9 | 5600 | 0.2778 | 0.9359 | 72.9826 | 0.8639 | 0.9133 | 0.8879 | 88.2114 |
0.0648 | 13.13 | 5700 | 0.2876 | 0.9333 | 72.9175 | 0.8587 | 0.9111 | 0.8841 | 88.2114 |
0.0738 | 13.36 | 5800 | 0.2782 | 0.9360 | 73.0831 | 0.8647 | 0.9144 | 0.8888 | 88.1533 |
0.0653 | 13.59 | 5900 | 0.2803 | 0.9354 | 73.0048 | 0.8628 | 0.9120 | 0.8867 | 88.2695 |
0.0717 | 13.82 | 6000 | 0.2792 | 0.9359 | 73.0330 | 0.8387 | 0.9033 | 0.8698 | 87.8049 |
0.071 | 14.06 | 6100 | 0.2787 | 0.9363 | 73.0967 | 0.8527 | 0.9070 | 0.8790 | 87.9210 |
0.0661 | 14.29 | 6200 | 0.2828 | 0.9361 | 73.0762 | 0.8482 | 0.9068 | 0.8765 | 87.8630 |
0.062 | 14.52 | 6300 | 0.2812 | 0.9361 | 73.0716 | 0.8399 | 0.9070 | 0.8722 | 87.6887 |
0.0722 | 14.75 | 6400 | 0.2808 | 0.9361 | 73.0682 | 0.8377 | 0.9032 | 0.8692 | 87.5145 |
0.0633 | 14.98 | 6500 | 0.2811 | 0.9361 | 73.0667 | 0.8451 | 0.9039 | 0.8735 | 87.6307 |
Framework versions
- Transformers 4.26.0
- Pytorch 1.12.0
- Datasets 2.9.0
- Tokenizers 0.13.2
- Downloads last month
- 149