Edit model card

MBART to "translate" English to AMR

To be used with MBART text-to-AMR pipeline (not yet available). Won't work with the default MBartTokenizer so you have to be patient until the pipeline can become available. :-)

This model is a fine-tuned version of facebook/mbart-large-cc25 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2811
  • Accuracy: 0.9361
  • Bleu: 73.0667
  • Smatch Precision: 0.8451
  • Smatch Recall: 0.9039
  • Smatch Fscore: 0.8735

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 128
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy Bleu Smatch Precision Smatch Recall Smatch Fscore Ratio Invalid Amrs
1.5295 0.23 100 1.2218 0.7536 55.6802 0.2551 0.6184 0.3612 86.6434
0.978 0.46 200 0.7306 0.8311 63.4299 0.3785 0.7182 0.4957 87.0499
0.7187 0.69 300 0.5882 0.8484 66.1354 0.5547 0.8481 0.6707 93.9605
0.599 0.92 400 0.4560 0.8820 68.3221 0.6594 0.8046 0.7248 89.7213
0.4842 1.15 500 0.3876 0.8904 69.5185 0.7491 0.8648 0.8028 92.2764
0.4311 1.38 600 0.3653 0.8913 69.7931 0.7589 0.8922 0.8202 92.6249
0.4171 1.61 700 0.3244 0.9084 70.8940 0.7759 0.8615 0.8165 90.0697
0.3769 1.84 800 0.2995 0.9128 71.0933 0.7824 0.8688 0.8234 89.6051
0.3121 2.07 900 0.2869 0.9177 71.3434 0.8014 0.8831 0.8403 89.8955
0.2843 2.3 1000 0.2755 0.9190 71.2255 0.8021 0.8766 0.8377 89.3148
0.3013 2.53 1100 0.2876 0.9140 70.8907 0.7391 0.8503 0.7908 86.0627
0.3192 2.76 1200 0.2674 0.9206 71.4303 0.8179 0.8991 0.8566 89.7793
0.3032 2.99 1300 0.2597 0.9230 71.6003 0.7791 0.8794 0.8262 89.1405
0.2367 3.23 1400 0.2933 0.9148 71.7204 0.8318 0.8935 0.8615 91.4634
0.247 3.46 1500 0.2505 0.9272 72.1396 0.8224 0.8889 0.8543 89.0244
0.2326 3.69 1600 0.2467 0.9284 72.0828 0.8257 0.8992 0.8609 88.8502
0.2622 3.92 1700 0.2590 0.9236 71.9205 0.8231 0.8902 0.8553 90.0697
0.1935 4.15 1800 0.2528 0.9281 72.0722 0.8523 0.9075 0.8790 88.7340
0.2067 4.38 1900 0.2480 0.9287 72.2628 0.8322 0.9062 0.8677 89.1405
0.2248 4.61 2000 0.2520 0.9273 72.4493 0.8474 0.9023 0.8740 89.5470
0.2049 4.84 2100 0.2403 0.9316 72.3463 0.8231 0.8998 0.8598 88.0952
0.1942 5.07 2200 0.2482 0.9314 72.4402 0.8291 0.8987 0.8625 89.6051
0.1796 5.3 2300 0.2587 0.9319 72.6028 0.8349 0.8955 0.8642 88.0952
0.1852 5.53 2400 0.2550 0.9316 72.4129 0.8435 0.9002 0.8710 88.4437
0.1898 5.76 2500 0.2493 0.9321 72.5551 0.8269 0.8957 0.8599 87.7468
0.1861 5.99 2600 0.2459 0.9314 72.4291 0.8565 0.9085 0.8817 88.2695
0.1568 6.22 2700 0.2487 0.9321 72.5308 0.8582 0.9122 0.8844 88.1533
0.1491 6.45 2800 0.2461 0.9331 72.6714 0.8632 0.9154 0.8885 88.5598
0.1437 6.68 2900 0.2434 0.9330 72.6621 0.8699 0.9097 0.8893 88.2695
0.1504 6.91 3000 0.2496 0.9341 72.7762 0.8544 0.9021 0.8776 87.5726
0.1313 7.14 3100 0.2510 0.9339 72.7713 0.8674 0.9048 0.8857 88.0372
0.1501 7.37 3200 0.2502 0.9343 72.7488 0.8633 0.9016 0.8820 88.3275
0.1295 7.6 3300 0.2459 0.9348 72.6939 0.8365 0.8969 0.8657 87.9210
0.1262 7.83 3400 0.2524 0.9318 72.8235 0.8509 0.9077 0.8784 88.3275
0.1072 8.06 3500 0.2551 0.9346 72.7323 0.8566 0.9022 0.8788 88.2695
0.1198 8.29 3600 0.2549 0.9350 72.8186 0.8638 0.9099 0.8862 88.0372
0.1175 8.52 3700 0.2581 0.9331 72.6339 0.8624 0.9054 0.8834 88.5598
0.1173 8.75 3800 0.2508 0.9357 73.1089 0.8515 0.9057 0.8778 87.9791
0.1208 8.98 3900 0.2542 0.9335 72.8848 0.8416 0.8972 0.8685 87.9210
0.0874 9.22 4000 0.2580 0.9350 72.9432 0.8532 0.9052 0.8784 88.0372
0.1019 9.45 4100 0.2615 0.9351 72.8476 0.8704 0.9024 0.8862 87.9791
0.1039 9.68 4200 0.2635 0.9331 72.8678 0.8432 0.8900 0.8660 87.2242
0.0986 9.91 4300 0.2588 0.9352 72.9545 0.8548 0.9078 0.8805 87.7468
0.0867 10.14 4400 0.2659 0.9347 72.8253 0.8574 0.9025 0.8794 87.9210
0.1029 10.37 4500 0.2651 0.9350 72.9023 0.8480 0.9042 0.8752 87.8630
0.0935 10.6 4600 0.2669 0.9344 72.8549 0.8438 0.8981 0.8701 87.9791
0.0944 10.83 4700 0.2703 0.9334 72.8564 0.8460 0.9021 0.8732 87.3403
0.0724 11.06 4800 0.2712 0.9349 72.9326 0.8435 0.9010 0.8713 88.2695
0.0906 11.29 4900 0.2708 0.9351 72.8490 0.8513 0.9062 0.8779 87.8049
0.0819 11.52 5000 0.2683 0.9356 72.8973 0.8304 0.9056 0.8664 87.9791
0.0892 11.75 5100 0.2704 0.9361 72.9746 0.8463 0.9069 0.8755 87.9210
0.0791 11.98 5200 0.2705 0.9353 72.9050 0.8475 0.9064 0.8759 88.1533
0.0718 12.21 5300 0.2751 0.9361 73.0216 0.8546 0.9035 0.8783 87.9791
0.0744 12.44 5400 0.2769 0.9355 72.9041 0.8717 0.9063 0.8886 87.9210
0.081 12.67 5500 0.2735 0.9359 72.9850 0.8501 0.9092 0.8786 87.8630
0.0757 12.9 5600 0.2778 0.9359 72.9826 0.8639 0.9133 0.8879 88.2114
0.0648 13.13 5700 0.2876 0.9333 72.9175 0.8587 0.9111 0.8841 88.2114
0.0738 13.36 5800 0.2782 0.9360 73.0831 0.8647 0.9144 0.8888 88.1533
0.0653 13.59 5900 0.2803 0.9354 73.0048 0.8628 0.9120 0.8867 88.2695
0.0717 13.82 6000 0.2792 0.9359 73.0330 0.8387 0.9033 0.8698 87.8049
0.071 14.06 6100 0.2787 0.9363 73.0967 0.8527 0.9070 0.8790 87.9210
0.0661 14.29 6200 0.2828 0.9361 73.0762 0.8482 0.9068 0.8765 87.8630
0.062 14.52 6300 0.2812 0.9361 73.0716 0.8399 0.9070 0.8722 87.6887
0.0722 14.75 6400 0.2808 0.9361 73.0682 0.8377 0.9032 0.8692 87.5145
0.0633 14.98 6500 0.2811 0.9361 73.0667 0.8451 0.9039 0.8735 87.6307

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.12.0
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
149
Hosted inference API

Inference API has been turned off for this model.

Space using BramVanroy/mbart-en-to-amr 1