MBART to "translate" English, Spanish and Dutch to AMR
To be used with MBART text-to-AMR pipeline (not yet available). Won't work with the default MBartTokenizer so you have to be patient until the pipeline can become available. :-)
This model is a fine-tuned version of facebook/mbart-large-cc25 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3301
- Accuracy: 0.9180
- Bleu: 69.9161
- Smatch Precision: 0.8088
- Smatch Recall: 0.8878
- Smatch Fscore: 0.8465
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Bleu | Smatch Precision | Smatch Recall | Smatch Fscore | Ratio Invalid Amrs |
---|---|---|---|---|---|---|---|---|---|
1.8405 | 0.08 | 100 | 1.5336 | 0.6884 | 48.1355 | 0.2062 | 0.5313 | 0.2970 | 79.5780 |
1.2656 | 0.15 | 200 | 0.9595 | 0.7799 | 58.3189 | 0.3576 | 0.6405 | 0.4589 | 93.7863 |
0.996 | 0.23 | 300 | 0.7541 | 0.8240 | 62.2701 | 0.5021 | 0.7736 | 0.6089 | 94.4638 |
0.9236 | 0.31 | 400 | 0.6923 | 0.8298 | 63.3524 | 0.5014 | 0.8177 | 0.6216 | 94.1928 |
0.8074 | 0.38 | 500 | 0.5592 | 0.8643 | 65.1618 | 0.6030 | 0.7911 | 0.6843 | 91.1343 |
0.693 | 0.46 | 600 | 0.5499 | 0.8628 | 65.7325 | 0.5453 | 0.8207 | 0.6552 | 92.0441 |
0.6427 | 0.54 | 700 | 0.4840 | 0.8761 | 67.3134 | 0.6329 | 0.8262 | 0.7167 | 91.6957 |
0.6001 | 0.61 | 800 | 0.4613 | 0.8792 | 67.1435 | 0.6296 | 0.8464 | 0.7221 | 91.8893 |
0.6801 | 0.69 | 900 | 0.4265 | 0.8889 | 66.8917 | 0.6635 | 0.8356 | 0.7397 | 90.9408 |
0.5366 | 0.77 | 1000 | 0.4399 | 0.8899 | 66.8936 | 0.6430 | 0.8182 | 0.7201 | 89.1792 |
0.5446 | 0.84 | 1100 | 0.4050 | 0.8953 | 67.5782 | 0.6612 | 0.8492 | 0.7435 | 90.7859 |
0.4848 | 0.92 | 1200 | 0.4026 | 0.8955 | 68.3245 | 0.6778 | 0.8531 | 0.7554 | 90.2245 |
0.4988 | 1.0 | 1300 | 0.3909 | 0.8955 | 68.1950 | 0.6829 | 0.8673 | 0.7641 | 90.7859 |
0.4567 | 1.07 | 1400 | 0.3825 | 0.9013 | 68.2347 | 0.6899 | 0.8669 | 0.7683 | 89.7019 |
0.4563 | 1.15 | 1500 | 0.3800 | 0.9014 | 68.2520 | 0.7375 | 0.8664 | 0.7967 | 90.4181 |
0.4386 | 1.23 | 1600 | 0.3806 | 0.8996 | 68.1288 | 0.7334 | 0.8768 | 0.7987 | 91.1537 |
0.4377 | 1.3 | 1700 | 0.3814 | 0.8968 | 67.6520 | 0.7182 | 0.8380 | 0.7735 | 88.5792 |
0.4477 | 1.38 | 1800 | 0.3781 | 0.8986 | 68.1177 | 0.7376 | 0.8763 | 0.8010 | 91.8118 |
0.4254 | 1.46 | 1900 | 0.3578 | 0.9062 | 68.5803 | 0.7173 | 0.8635 | 0.7836 | 89.7406 |
0.451 | 1.53 | 2000 | 0.3569 | 0.9061 | 68.9853 | 0.7563 | 0.8708 | 0.8095 | 90.3020 |
0.3828 | 1.61 | 2100 | 0.3579 | 0.9050 | 68.7272 | 0.7712 | 0.8733 | 0.8191 | 90.3600 |
0.4147 | 1.69 | 2200 | 0.3545 | 0.9067 | 69.0921 | 0.7690 | 0.8786 | 0.8201 | 90.6504 |
0.3699 | 1.76 | 2300 | 0.3546 | 0.9059 | 69.2822 | 0.7562 | 0.8774 | 0.8123 | 90.6117 |
0.3651 | 1.84 | 2400 | 0.3468 | 0.9098 | 70.1585 | 0.7761 | 0.8737 | 0.8220 | 89.9148 |
0.3831 | 1.92 | 2500 | 0.3431 | 0.9101 | 69.0716 | 0.7619 | 0.8721 | 0.8133 | 89.8180 |
0.3676 | 1.99 | 2600 | 0.3447 | 0.9098 | 69.8364 | 0.7814 | 0.8765 | 0.8262 | 90.2245 |
0.3281 | 2.07 | 2700 | 0.3443 | 0.9097 | 69.1463 | 0.8037 | 0.8804 | 0.8403 | 90.4762 |
0.3471 | 2.15 | 2800 | 0.3407 | 0.9116 | 69.2910 | 0.7662 | 0.8763 | 0.8175 | 89.6245 |
0.327 | 2.22 | 2900 | 0.3414 | 0.9118 | 69.8713 | 0.7725 | 0.8752 | 0.8207 | 89.7213 |
0.3232 | 2.3 | 3000 | 0.3386 | 0.9129 | 69.4165 | 0.7666 | 0.8765 | 0.8179 | 89.5277 |
0.3168 | 2.38 | 3100 | 0.3593 | 0.9051 | 69.1672 | 0.7736 | 0.8824 | 0.8244 | 90.9408 |
0.2781 | 2.45 | 3200 | 0.3408 | 0.9127 | 69.2028 | 0.7767 | 0.8720 | 0.8216 | 89.1599 |
0.3135 | 2.53 | 3300 | 0.3374 | 0.9131 | 69.3979 | 0.7611 | 0.8760 | 0.8146 | 89.6438 |
0.326 | 2.61 | 3400 | 0.3336 | 0.9128 | 69.9662 | 0.7916 | 0.8815 | 0.8341 | 89.9923 |
0.3258 | 2.68 | 3500 | 0.3329 | 0.9139 | 69.7743 | 0.7925 | 0.8796 | 0.8338 | 89.8180 |
0.3159 | 2.76 | 3600 | 0.3377 | 0.9130 | 69.6988 | 0.7845 | 0.8877 | 0.8329 | 89.6825 |
0.3178 | 2.84 | 3700 | 0.3303 | 0.9142 | 69.6296 | 0.7787 | 0.8780 | 0.8254 | 88.8308 |
0.3144 | 2.91 | 3800 | 0.3310 | 0.9137 | 69.3942 | 0.7895 | 0.8815 | 0.8330 | 89.3728 |
0.3098 | 2.99 | 3900 | 0.3298 | 0.9151 | 69.8902 | 0.8011 | 0.8732 | 0.8356 | 89.1986 |
0.3005 | 3.07 | 4000 | 0.3334 | 0.9154 | 69.6235 | 0.7845 | 0.8819 | 0.8303 | 89.3922 |
0.2716 | 3.14 | 4100 | 0.3319 | 0.9154 | 69.4647 | 0.8098 | 0.8797 | 0.8433 | 89.4890 |
0.2801 | 3.22 | 4200 | 0.3329 | 0.9151 | 69.5338 | 0.8019 | 0.8851 | 0.8415 | 89.6825 |
0.2721 | 3.3 | 4300 | 0.3327 | 0.9153 | 69.6714 | 0.8028 | 0.8885 | 0.8435 | 89.6051 |
0.2607 | 3.37 | 4400 | 0.3310 | 0.9157 | 69.5581 | 0.7916 | 0.8797 | 0.8333 | 89.2760 |
0.2823 | 3.45 | 4500 | 0.3309 | 0.9156 | 69.6805 | 0.8123 | 0.8887 | 0.8488 | 89.3922 |
0.2675 | 3.53 | 4600 | 0.3313 | 0.9158 | 69.6664 | 0.8168 | 0.8844 | 0.8492 | 89.4115 |
0.2642 | 3.6 | 4700 | 0.3297 | 0.9166 | 69.6888 | 0.8147 | 0.8904 | 0.8509 | 89.2954 |
0.2842 | 3.68 | 4800 | 0.3299 | 0.9162 | 69.6175 | 0.8000 | 0.8870 | 0.8413 | 89.5858 |
0.2646 | 3.76 | 4900 | 0.3294 | 0.9168 | 69.6792 | 0.7889 | 0.8827 | 0.8332 | 89.1986 |
0.2624 | 3.83 | 5000 | 0.3276 | 0.9171 | 69.6874 | 0.8047 | 0.8906 | 0.8455 | 89.2760 |
0.2647 | 3.91 | 5100 | 0.3282 | 0.9166 | 69.6530 | 0.7998 | 0.8823 | 0.8390 | 89.3535 |
0.2525 | 3.99 | 5200 | 0.3269 | 0.9168 | 69.7478 | 0.8062 | 0.8853 | 0.8439 | 89.3535 |
0.2417 | 4.06 | 5300 | 0.3311 | 0.9168 | 69.6945 | 0.7978 | 0.8877 | 0.8404 | 89.4503 |
0.2608 | 4.14 | 5400 | 0.3311 | 0.9169 | 69.7272 | 0.7998 | 0.8865 | 0.8409 | 89.3535 |
0.2408 | 4.22 | 5500 | 0.3308 | 0.9172 | 69.9450 | 0.8111 | 0.8864 | 0.8471 | 89.3341 |
0.2268 | 4.29 | 5600 | 0.3319 | 0.9176 | 69.8016 | 0.7923 | 0.8845 | 0.8359 | 89.0437 |
0.2158 | 4.37 | 5700 | 0.3315 | 0.9173 | 69.7748 | 0.8008 | 0.8849 | 0.8407 | 89.5083 |
0.2461 | 4.45 | 5800 | 0.3310 | 0.9174 | 69.9786 | 0.8030 | 0.8876 | 0.8432 | 89.2954 |
0.249 | 4.52 | 5900 | 0.3315 | 0.9176 | 69.9070 | 0.8066 | 0.8886 | 0.8456 | 89.4503 |
0.2428 | 4.6 | 6000 | 0.3312 | 0.9176 | 69.8172 | 0.8017 | 0.8859 | 0.8417 | 89.2760 |
0.2266 | 4.68 | 6100 | 0.3306 | 0.9178 | 69.8095 | 0.8016 | 0.8893 | 0.8431 | 89.1599 |
0.2266 | 4.75 | 6200 | 0.3305 | 0.9178 | 69.8328 | 0.8090 | 0.8902 | 0.8476 | 89.4309 |
0.2341 | 4.83 | 6300 | 0.3305 | 0.9180 | 69.8605 | 0.8101 | 0.8883 | 0.8474 | 89.4309 |
0.2226 | 4.91 | 6400 | 0.3305 | 0.9179 | 69.9342 | 0.8101 | 0.8896 | 0.8480 | 89.3728 |
0.209 | 4.98 | 6500 | 0.3301 | 0.9180 | 69.9161 | 0.8088 | 0.8878 | 0.8465 | 89.3728 |
Framework versions
- Transformers 4.26.0
- Pytorch 1.12.0
- Datasets 2.9.0
- Tokenizers 0.13.2
- Downloads last month
- 7