Edit model card

MBART to "translate" English, Spanish and Dutch to AMR

To be used with MBART text-to-AMR pipeline (not yet available). Won't work with the default MBartTokenizer so you have to be patient until the pipeline can become available. :-)

This model is a fine-tuned version of facebook/mbart-large-cc25 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3301
  • Accuracy: 0.9180
  • Bleu: 69.9161
  • Smatch Precision: 0.8088
  • Smatch Recall: 0.8878
  • Smatch Fscore: 0.8465

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 128
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy Bleu Smatch Precision Smatch Recall Smatch Fscore Ratio Invalid Amrs
1.8405 0.08 100 1.5336 0.6884 48.1355 0.2062 0.5313 0.2970 79.5780
1.2656 0.15 200 0.9595 0.7799 58.3189 0.3576 0.6405 0.4589 93.7863
0.996 0.23 300 0.7541 0.8240 62.2701 0.5021 0.7736 0.6089 94.4638
0.9236 0.31 400 0.6923 0.8298 63.3524 0.5014 0.8177 0.6216 94.1928
0.8074 0.38 500 0.5592 0.8643 65.1618 0.6030 0.7911 0.6843 91.1343
0.693 0.46 600 0.5499 0.8628 65.7325 0.5453 0.8207 0.6552 92.0441
0.6427 0.54 700 0.4840 0.8761 67.3134 0.6329 0.8262 0.7167 91.6957
0.6001 0.61 800 0.4613 0.8792 67.1435 0.6296 0.8464 0.7221 91.8893
0.6801 0.69 900 0.4265 0.8889 66.8917 0.6635 0.8356 0.7397 90.9408
0.5366 0.77 1000 0.4399 0.8899 66.8936 0.6430 0.8182 0.7201 89.1792
0.5446 0.84 1100 0.4050 0.8953 67.5782 0.6612 0.8492 0.7435 90.7859
0.4848 0.92 1200 0.4026 0.8955 68.3245 0.6778 0.8531 0.7554 90.2245
0.4988 1.0 1300 0.3909 0.8955 68.1950 0.6829 0.8673 0.7641 90.7859
0.4567 1.07 1400 0.3825 0.9013 68.2347 0.6899 0.8669 0.7683 89.7019
0.4563 1.15 1500 0.3800 0.9014 68.2520 0.7375 0.8664 0.7967 90.4181
0.4386 1.23 1600 0.3806 0.8996 68.1288 0.7334 0.8768 0.7987 91.1537
0.4377 1.3 1700 0.3814 0.8968 67.6520 0.7182 0.8380 0.7735 88.5792
0.4477 1.38 1800 0.3781 0.8986 68.1177 0.7376 0.8763 0.8010 91.8118
0.4254 1.46 1900 0.3578 0.9062 68.5803 0.7173 0.8635 0.7836 89.7406
0.451 1.53 2000 0.3569 0.9061 68.9853 0.7563 0.8708 0.8095 90.3020
0.3828 1.61 2100 0.3579 0.9050 68.7272 0.7712 0.8733 0.8191 90.3600
0.4147 1.69 2200 0.3545 0.9067 69.0921 0.7690 0.8786 0.8201 90.6504
0.3699 1.76 2300 0.3546 0.9059 69.2822 0.7562 0.8774 0.8123 90.6117
0.3651 1.84 2400 0.3468 0.9098 70.1585 0.7761 0.8737 0.8220 89.9148
0.3831 1.92 2500 0.3431 0.9101 69.0716 0.7619 0.8721 0.8133 89.8180
0.3676 1.99 2600 0.3447 0.9098 69.8364 0.7814 0.8765 0.8262 90.2245
0.3281 2.07 2700 0.3443 0.9097 69.1463 0.8037 0.8804 0.8403 90.4762
0.3471 2.15 2800 0.3407 0.9116 69.2910 0.7662 0.8763 0.8175 89.6245
0.327 2.22 2900 0.3414 0.9118 69.8713 0.7725 0.8752 0.8207 89.7213
0.3232 2.3 3000 0.3386 0.9129 69.4165 0.7666 0.8765 0.8179 89.5277
0.3168 2.38 3100 0.3593 0.9051 69.1672 0.7736 0.8824 0.8244 90.9408
0.2781 2.45 3200 0.3408 0.9127 69.2028 0.7767 0.8720 0.8216 89.1599
0.3135 2.53 3300 0.3374 0.9131 69.3979 0.7611 0.8760 0.8146 89.6438
0.326 2.61 3400 0.3336 0.9128 69.9662 0.7916 0.8815 0.8341 89.9923
0.3258 2.68 3500 0.3329 0.9139 69.7743 0.7925 0.8796 0.8338 89.8180
0.3159 2.76 3600 0.3377 0.9130 69.6988 0.7845 0.8877 0.8329 89.6825
0.3178 2.84 3700 0.3303 0.9142 69.6296 0.7787 0.8780 0.8254 88.8308
0.3144 2.91 3800 0.3310 0.9137 69.3942 0.7895 0.8815 0.8330 89.3728
0.3098 2.99 3900 0.3298 0.9151 69.8902 0.8011 0.8732 0.8356 89.1986
0.3005 3.07 4000 0.3334 0.9154 69.6235 0.7845 0.8819 0.8303 89.3922
0.2716 3.14 4100 0.3319 0.9154 69.4647 0.8098 0.8797 0.8433 89.4890
0.2801 3.22 4200 0.3329 0.9151 69.5338 0.8019 0.8851 0.8415 89.6825
0.2721 3.3 4300 0.3327 0.9153 69.6714 0.8028 0.8885 0.8435 89.6051
0.2607 3.37 4400 0.3310 0.9157 69.5581 0.7916 0.8797 0.8333 89.2760
0.2823 3.45 4500 0.3309 0.9156 69.6805 0.8123 0.8887 0.8488 89.3922
0.2675 3.53 4600 0.3313 0.9158 69.6664 0.8168 0.8844 0.8492 89.4115
0.2642 3.6 4700 0.3297 0.9166 69.6888 0.8147 0.8904 0.8509 89.2954
0.2842 3.68 4800 0.3299 0.9162 69.6175 0.8000 0.8870 0.8413 89.5858
0.2646 3.76 4900 0.3294 0.9168 69.6792 0.7889 0.8827 0.8332 89.1986
0.2624 3.83 5000 0.3276 0.9171 69.6874 0.8047 0.8906 0.8455 89.2760
0.2647 3.91 5100 0.3282 0.9166 69.6530 0.7998 0.8823 0.8390 89.3535
0.2525 3.99 5200 0.3269 0.9168 69.7478 0.8062 0.8853 0.8439 89.3535
0.2417 4.06 5300 0.3311 0.9168 69.6945 0.7978 0.8877 0.8404 89.4503
0.2608 4.14 5400 0.3311 0.9169 69.7272 0.7998 0.8865 0.8409 89.3535
0.2408 4.22 5500 0.3308 0.9172 69.9450 0.8111 0.8864 0.8471 89.3341
0.2268 4.29 5600 0.3319 0.9176 69.8016 0.7923 0.8845 0.8359 89.0437
0.2158 4.37 5700 0.3315 0.9173 69.7748 0.8008 0.8849 0.8407 89.5083
0.2461 4.45 5800 0.3310 0.9174 69.9786 0.8030 0.8876 0.8432 89.2954
0.249 4.52 5900 0.3315 0.9176 69.9070 0.8066 0.8886 0.8456 89.4503
0.2428 4.6 6000 0.3312 0.9176 69.8172 0.8017 0.8859 0.8417 89.2760
0.2266 4.68 6100 0.3306 0.9178 69.8095 0.8016 0.8893 0.8431 89.1599
0.2266 4.75 6200 0.3305 0.9178 69.8328 0.8090 0.8902 0.8476 89.4309
0.2341 4.83 6300 0.3305 0.9180 69.8605 0.8101 0.8883 0.8474 89.4309
0.2226 4.91 6400 0.3305 0.9179 69.9342 0.8101 0.8896 0.8480 89.3728
0.209 4.98 6500 0.3301 0.9180 69.9161 0.8088 0.8878 0.8465 89.3728

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.12.0
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
7
Hosted inference API

Inference API has been turned off for this model.

Space using BramVanroy/mbart-en-es-nl-to-amr 1