--- base_model: meta-llama/Llama-2-13b-hf tags: - generated_from_trainer datasets: - yhavinga/mc4_nl_cleaned model-index: - name: tiny-3e-4lr+1152tbs+1ep+0.1wd results: [] --- # tiny-3e-4lr+1152tbs+1ep+0.1wd This model is a fine-tuned version of [meta-llama/Llama-2-13b-hf](https://huggingface.co/meta-llama/Llama-2-13b-hf) on the yhavinga/mc4_nl_cleaned micro dataset. It achieves the following results on the evaluation set: - Loss: 1.7676 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - distributed_type: multi-GPU - num_devices: 16 - gradient_accumulation_steps: 6 - total_train_batch_size: 1152 - total_eval_batch_size: 192 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.8784 | 0.09 | 90 | 1.8820 | | 1.8344 | 0.19 | 180 | 1.8542 | | 1.8351 | 0.28 | 270 | 1.8355 | | 1.8206 | 0.37 | 360 | 1.8212 | | 1.8021 | 0.47 | 450 | 1.8088 | | 1.8102 | 0.56 | 540 | 1.7982 | | 1.7991 | 0.65 | 630 | 1.7890 | | 1.7788 | 0.74 | 720 | 1.7811 | | 1.7915 | 0.84 | 810 | 1.7742 | | 1.7715 | 0.93 | 900 | 1.7676 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3