--- license: mit base_model: BramVanroy/fietje-2b tags: - trl - fietje - alignment-handbook - sft datasets: - BramVanroy/ultrachat_200k_dutch - BramVanroy/no_robots_dutch - BramVanroy/belebele_dutch model-index: - name: fietje-2b-instruct results: [] pipeline_tag: text-generation inference: false language: - nl ---
# fietje-2b-sft This model is a fine-tuned version of [BramVanroy/fietje-2b](https://huggingface.co/BramVanroy/fietje-2b) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 0.8818 ## Model description More information needed ## Intended uses & limitations The same limitations as [phi-2](https://huggingface.co/microsoft/phi-2#limitations-of-phi-2), and LLMs in general, apply here. LLMs hallucinate, make mistakes, and should not be trusted. Use at your own risk! ## Training and evaluation data Fietje 2B instruct was finetuned from [the base model](https://huggingface.co/BramVanroy/fietje-2b) on the following datasets. Number of training samples per dataset given in brackets, totalling 201,579. - [BramVanroy/ultrachat_200k_dutch](https://huggingface.co/datasets/BramVanroy/ultrachat_200k_dutch): gpt-4-1106-preview; multi-turn; fully generated (192,598) - [BramVanroy/no_robots_dutch](https://huggingface.co/datasets/BramVanroy/no_robots_dutch): gpt-4-1106-preview; prompt translate, answer generated; some items have system messages (8181) - [BramVanroy/belebele_dutch](https://huggingface.co/datasets/BramVanroy/belebele_dutch): Dutch portion of [belebele](https://huggingface.co/datasets/facebook/belebele), formatted into SFT format (800) ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 42 - eval_batch_size: 42 - seed: 42 - distributed_type: multi-GPU - num_devices: 16 - total_train_batch_size: 672 - total_eval_batch_size: 672 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-07 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.9325 | 1.0 | 178 | 0.9060 | | 0.8687 | 2.0 | 356 | 0.8850 | | 0.8385 | 3.0 | 534 | 0.8818 | ### Framework versions - Transformers 4.39.1 - Pytorch 2.1.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2👱♀️ Base version - 🤖 Instruct version (this one) - 💬 Chat version - 🚀 GGUF of instruct model