--- license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - BrainTheos/ojpl metrics: - wer model-index: - name: whisper-medium-ln-ojpl-2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: BrainTheos/ojpl type: BrainTheos/ojpl config: default split: train args: default metrics: - name: Wer type: wer value: 0.29010989010989013 --- # whisper-medium-ln-ojpl-2 This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the BrainTheos/ojpl dataset. It achieves the following results on the evaluation set: - Loss: 1.1202 - Wer Ortho: 35.8309 - Wer: 0.2901 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 0.0172 | 23.19 | 1000 | 0.9966 | 41.9139 | 0.3407 | | 0.0053 | 46.38 | 2000 | 1.0716 | 37.0920 | 0.2996 | | 0.0034 | 69.57 | 3000 | 1.1329 | 36.0163 | 0.2850 | | 0.0021 | 92.75 | 4000 | 1.1202 | 35.8309 | 0.2901 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3